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Abstract

Principal differential analysis (PDA) is an alternative parameter estimation technique for differential equation models in which basis functions
(e.g., B-splines) are fitted to dynamic data. Derivatives of the resulting empirical expressions are used to avoid solving differential eqgrations wh
estimating parameters. Benefits and shortcomings of PDA were examined using a simple continuous stirred-tank reactor (CSTR) model. Althoug
PDA required considerably less computational effort than traditional nonlinear regression, parameter estimates from PDA were less precise
Sparse and noisy data resulted in poor spline fits and misleading derivative information, leading to poor parameter estimates. These problems ¢
addressed by a new iterative algorithm (iPDA) in which the spline fits are improved using model-based penalties. Parameter estimates from iPD
were unbiased and more precise than those from standard PDA. Issues that need to be resolved before iPDA can be used for more complex moc

are discussed.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction available for estimating parameters in discrete-time dynamic
models [jung, 1999. The current article is focused on parame-
Parameter estimation in dynamic models isimportantin manyer estimation in continuous-time ordinary differential equation
fields of science and engineering because many physical, chenfloDE) or differential-algebraic equation (DAE) models that are

cal and biological processes are described by systems of ordinamgnlinear in the parameters.

differential equations (ODEs) with unknown parameters. For When estimating model parameters, the objective is to deter-
chemical engineers, the benefits of developing dynamic mecharine appropriate parameter values so that errors between the
nistic models with accurate parameter estimates have increasedtputs of the estimated model and the measured data are min-
in recent years due to the development of process optimizamized in some sense, i.e., the predicted response values from
tion and control technologies that can use fundamental modetbe model should match the measurements as closely as possi-
(Biegler & Grossman, 20Q4El-Farra & Christofides, 2003 ble. Most commonly used parameter estimation techniques are
Nagy & Braatz, 2008 based on least-squares regression, which involves minimization
Parameter estimation is a difficult and important step in theof the sum of squared differences between the measurements
development of models that are consistent with fundamentand the model predictions. Generalized least-squares regression

behavior of the physical process and consistent with availablend multi-response estimation are described in detapdlyer
data. Estimates of unknown parameters are obtained using meand Wild (1989)andBates and Watts (1988)
surements from dynamic experiments, which invariably contain  Ogunnaike and Ray (1994)escribe the iterative nonlinear

random errors. Numerous system identification techniques atleast-squares (NLS) procedure that is commonly used to esti-
mate parameters in ODE (or DAE) models that do not have
analytical solutions. Firstthe ODEs (or DAES) are solved numer-
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compared with measured responses, and an optimization algonlikely that new algorithms for parameter estimation in differ-
rithm determines a new set of parameter estimates that shouddhtial equation models will be adopted on the basis of reduced
result in better model predictions. Sensitivity equations can beomputation time alone. Additional benefits and applicability to
solved along with the model ODEs to obtain the Jacobian oflarge class of difficult parameter estimation problems will need
the response variables with respect to the parameteis &  to be proven before PDA techniques are adopted by more than a
Kramer, 1988, so that the optimizer can determine appropriatefew curious users. The first step toward uncovering potential ben-
search directions for improved parameter values. The alterna&fits is to gain an improved understanding of PDA techniques, so
tives are to use either a numerical Jacobian or a direct-seart¢hat existing problems can be alleviated and so that opportunities
optimizer, requiring additional dynamic simulations with per- can be recognized.
turbations in each of the parameters. After new parameter values In this article, we examine the influence of various speci-
are determined by the optimizer, the ODEs (or DAES) are solvefications (B-spline knot placement and higher-order derivative
numerically using the updated parameters and the new predipenalties) that affect the quality of parameter estimates obtained
tions are compared with the data. Iteration between parameténom PDA, and we propose a new iteratively refined PDA algo-
updating and computation of numerical solutions continues untitithm that ensures good spline fits and parameter estimates. We
convergence criteria for the parameters are met or until ntest this methodology using linearized and nonlinear versions
significant improvement in the objective function is obtained.of a simple dynamic continuous stirred-tank reactor (CSTR)
Unfortunately, this method can be time consuming, with mosmodel, and we identify issues that need to be resolved before
ofthe computational effort arising from repeated numerical soluPDA techniques can enjoy widespread use for parameter esti-
tion of the differential equations. Initial values for all of the statesmation in more complex models of chemical processes.
are either assumed to be known, or must be estimated along
with the model parameters. Numerous algorithms have beeh Principal differential analysis
developed within this framework to obtain improved parame-
ter estimates with reduced computational effort (Baites & PDA is aterm used biramsay (1996 describe a parameter
Watts, 1985 Biegler, Damiano, & Blau, 198@ovi, Arato, &  estimation method wherein coefficients in linear, possibly time-
Maga, 1985Kalogerakis & Luus, 1983Mansouri & Kerrevev,  varying, ODEs are fitted empirically from data. Ramsay called
1998 Stewart, Caracotsios, & Sorensen, 1992 his technique principal differential analysis because of analo-
Varah (1982used an alternative parameter estimation techgies to principal component analysis (PCA), in which empirical
nique, based on the earlier work 8fvartz and Bremermann linear algebraic-equation models are fitted using multivariate
(1975)andBenson (197%hat does not require repeated numer-data.Ramsay and Silverman (1997, 2008¢used their efforts
ical solutions of the ODEs. In this methodology, and in a relatedn problems in which dynamic systems respond to unknown,
technique called principal differential analysis (PDRgfmsay, empirical, time-varying forcing functions. PDA has been used
1996, discrete measurements of the output variabjesare  to fit linear differential equation models for a diverse array of
fitted empirically using splines, which are then differentiatedapplications including handwriting analysiRgmsay, 2000
with respect to time to obtain estimated time-derivative curvesanalysis of the movement of the lips during speekchcéro,
dy/d:. This time-derivative information is then substituted into 2002 Ramsay & Munhall, 1996 economic modelingamsay
the ODEs, converting the parameter estimation problem fron& Ramsey, 2002 and meteorological modelindqRémsay &
a dynamic optimization problem into a much simpler algebraicSilverman, 2002, 2005In this article, we focus on parameter
optimization problem that can be solved using either linear leastestimation in fundamental ODE models of chemical processes
squares (if the ODEs are linear in the parameters) or nonlineavith known forcing inputs (sometimes called exogenous inputs
least-squares (if the ODEs are nonlinear in the parameters). PDA the system identification literature).
techniquesRRamsay, 1996; Varah, 198differ from commonly PDAs part of abroader, relatively new areain statistics called
used nonlinear least-squares methods for dynamic models, afighctional data analysis (FDA). The main concept in FDA is to
from an early spline-based methdé(g, 197)and its iterative  account for the underlying smooth functional behavior of a pro-
extension byMadar, Abonyi, Roubos, and Szeifert (2008)  cess response, instead of viewing the output as a collection of
PDA, parameter values are selected to minimize squared residiscrete pointsRamsay and Silverman (2008)gue that, by
uals in the differential form of the model, dd: — dy/dr)?, using this functional approach, the natural smoothness of the
rather than the traditional integrated form of the modek-(5)?. processes from which the data are taken can be exploited, which
Early on, Swartz and Bremermann (1978hd Varah (1982) may allow us to see things that a discrete-data approach would
identified the main benefits of PDA techniques (they are lessot. In this article we explore the potential benefits and prob-
computationally expensive than common parameter estimatiolems associated with using PDA for parameter estimation in a
techniques for dynamic models, and initial conditions for thesimple continuous stirred-tank reactor (CSTR) model, and we
output variables need not be known) as well as the main probcompare the parameter estimation results obtained using PDA to
lems that limit their use (poor spline fits can result in misleadinghose obtained using traditional nonlinear least-squares estima-
time-derivative information, which can lead to poor parametetion. In particular, we investigate the effects of knot placement
estimates). Computing resources have advanced greatly over thed higher-order derivative penalties during spline fitting on the
past 30 years, making traditional least-squares parameter estjuality of the spline fit and the resulting parameter estimates. We
mation techniques easier and less time-consuming for users. Ité&dso propose a new iteratively refined PDA technique (iPDA).
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This technique involves iteration between (1) fitting of splines,in all FDA techniques Ramsay & Silverman, 200Q5the dis-
which are penalized using the fundamental ODE model (witfcrete data points for an experimental {ugr;), u(z;)} are used
current estimates of the model parameters) and (2) estimatido determine approximate continuous-time traces for the under-
of the parameters in the fundamental model, using the estimatdging process outputs. These empirical curves are expressed in
spline coefficients from step (1). Using the squared residualterms of a fixed set a? known basis functiongp(1), p=1,. . .,
from the differential equation as a penalty during spline fittingP, which are continuous functions of time. There are a number
ensures that the fitted splines are consistent with the behavior of choices available for the type of basis function to be used:
the physical system, and leads to improved parameter estimatdurier series, polynomials, wavelets, and splines. B-splines are
the most common choice.
2.1. PDA terminology and notation
2.2. General properties of spline functions
When describing PDA for linear ODE modeRamsay and
Silverman (2005)iew the system dynamics aslaear dif- Splines are piecewise polynomial functions that, because of
ferential operator (LDO) acting upon the process variables. their simplicity and flexibility, are used for a variety of applica-

For example, consider a simple first-order, single-input singletions such as interpolating between data points and smoothing
output (SISO) ODE model: of noisy data. Spline smoothing involves dividing up the domain

of the data into segments separated by knots, with multiple data
dy + wyy 4+ weu =0 (2.1) points between the knots. The function describing the data is
dt ’ approximated as a weighted sum of basis functions, and a least-
If the process gain and time constant &peandz, respectively, ~Squares objective func_tion !s useq to fit t_his smooth function to
then the weighting coefficienis, andw, in the output {) and the raw data. When using piecewise cub3|c spgnes, there are four
input (u) variable terms are, = 1/7 andw, = —Kp/7,respec- Parameters for each cubic equation € ax” +bx* +cx+d),and
tively. In the PDA literature, this system would be describedthree continuity constraints (zeroth, first, and second derivatives

using a |inear differentia| operatmoperating Ory andu: matCh f0r adjacent Splines) at eaCh knot. Throughout th|5 article
we use the subscript to indicate the prediction from an empir-
Lly,u] = Diy + wyD(y)y + w,D%u =0 (2.2)  ical spline model, rather than the prediction from a fundamental

. . , differential equation model. A restricted least-squares approach
where the superscripts (1 or 0) onthe differentialpréfer to the that accounts for the continuity constraints can be used to deter-

firstand zeroth derivatives, respectively, with respecttotime,:’;\nﬂ1ine the cubic equation coefficients, but this approach can
the subscriptsy(or 1) denote whether the input or output is being be cumbersomeSeber & Lee, 2008 Sometimes a truncated-

dif(;ereg_t;fated. _Elq.(2.2) can be delxtended to describe higher- power-series method is used instead. Though this approach is
order differential equation model®gmsay & Ramsey, 2002 simpler, it also has computational problems. Spline predictions

?r multi-input multi-output (MIMO) systefmsr\]/vith intgractin? in intervals corresponding to large values of the independent
irst-order ODEsRoyton, 2005 However, for the remainder o variable depend on sums of many polynomial terms, which can

t_his paper we wil foc_us only on systems modeled by a Sir_‘glqead to anill-conditioned coefficient-estimation probledelber
first-order ODE. We will also forego the use of the LDO notationg | oo 2003

of the PDA literature, and will use the more familiar notation of
Eq.(2.1)instead.
If the model parametens, andw, for the true system were

kn%wn, andhthererz] Wlerff r?o (rjne_?jsur?megt n0|s|;1 or prlocess dis- A computationally better approach is to use B-spline basis
turbances, then the left-hand side of E11)would equal zero functions, consisting oRth order (or £ — 1)th degree) piece-

exactly. The idea of PDA is to approximate the derivative CUIVE ise polynomials. Each B-spline is positive within a domain

using the measured data, and then estimate the parameters so g‘ak intervals (defined byk + 1 consecutive knots), and zero
(dy/dr) + wyy + wyu is as close as possible to zero. By doing elsewherede Boor, 1978Seber & Lee, 2008 Since B-spline
this, we are minimizing some function of the residual cusi; basis functions are zero everywhere except over a finite inter-
wheree(r) is defined by val (referred to as compact support), the weighting-coefficient-
dy estimation problem is well conditioned. B-splines have been
ar +wyy + wyu = e(r) (2.3)  used in many engineering applications (eBghadir, 2003
. _ . .Kim, 1998 Lainiotis & Deshpande, 1974Shariff & Moser,

In standa}rd PDA, a least-squares approach is used to minimiz&9g Wang, Keast, & Muir, 200fincluding numerical solu-
the function: tion of partial differential equations (PDEs) and approximation

dy 2 ) of probability density functions. B-splines have also been used
SSEppa = / (dt +wyy + qu) dr = /e(t) dt (2.4) to aid parameter estimation in fundamental models. For exam-

ple, Thomaseth, Kautzky-Wilier, Ludvik, Prager, and Pacini

where the integration is over the time horizon of the data. F0(1996) used B-splines to provide an empirical model for a
parameter estimation using multiple dynamic experiments otime-varying parameter (or unknown forcing input) in a first-
multiple outputs, several integral terms are added together. Agrder ODE kinetic model, and then used nonlinear least-squares

2.3. B-splines
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to simultaneously estimate the fixed parameters in the funda-
mental model and the empirical spline coefficients. The more
recent PDA applications referenced in this artitledero, 2002;
Ramsay, 2000Ramsay & Ramsey, 2002/arah, 1982 have
used B-splines to construct smooth curves through the dynamic

response data, whereas the very early wddknson, 1979 2
Swartz & Bremermann, 197%ised standard cubic splines. E

To illustrate how B-splines can be used to approximate a <
function, consider the set of datakiig. la. These data are the (5

simulated response of reactant concentration to a step chang
in reactor temperature set point, for a linearized CSTR model
(described in detail in SectioB). Fig. 1 demonstrates how
B-spline basis functions are combined to approximate the step-
response data as a continuous empirical time trace. The weight
ing coefficients used for combining the B-spline basis functions
in Fig. 1b are shown irfrig. 1c. Itis evident, especially during the
first 6 min of the simulation, that seven B-spline basis functions
(Fig. 1a) are not sufficient to capture this response very well. As
we will show in Sectior.1, improved spline fits are obtained
when more basis functions are used, and when spline knots art
carefully placed.

Unfortunately, poor spline fits can result in misleading infor-
mation about ¢/d¢, causing problems for spline-based param- _—.
eter estimation methods. Better spline fits can be obtained by>
careful choice of the location of the knots, or by penalties on
high-order derivatives during the spline-fitting procedude (

Boor, 1978 Elfving & Andersson, 1998Schwetlick & Scliitze,
1995, 1997Varah, 1982

When using B-splines, interior knots are placed at timgs
72,..., Tx (Wherery <12<.--<71,) between the endpoints of the
data domain, with exterior knotg andz,+1 placed at the ends.

The B-splines are generated by starting the first spinrel (b)
artificial intervals to the left of the lower boundary point the

final spline extend® — 1 artificial intervals to the right of the
upper boundary point;,.+1. Fig. 1b shows a plot of seven B-
spline basis functions of fourth order (cubic B-splines), defined

by knots placed at intervals of 10 min, starting=a0 min. Each

of these B-splines is positive over a domainkof 4 intervals,

or atime of 40 min, and zero elsewhere. B-spline basis function
Y1 extends three artificial intervals to the left, with only the
fourth interval falling into the domain of the daté, extends e
two artificial intervals to the left ang 4 fits entirely within the
domain of the data.

For fourth-order B-splines, like those ifig. 1b, each B-
spline is composed of four piecewise cubic polynomials. For
example, inFig. 1b, B-spliney4 is composed of the following
cubics:

(@)

0.85

0.65F

1 1 1 1 L 1 L
0-55 5 10 15 20 25 30 35 40

20
Time (min)

0.7
0.6
0.5

0.4

13 0< 10 Fig. 1. (a) Spline fit to step-response data using seven B-spline basis functions;
6000 =r< (b) seven B-spline basis functions used to construct spline fit; (c) seven estimated
_ _ weights for B-spline basis functions.
—} L (r — 10§ — ( — 107 10<t<20
Valt) = 3 20 200 2000 (2.5)
2 (r—20F (r — 20y 20<1 <30 2.4. Determining spline coefficients from discrete data
3 100 2000 -
5 t  (r—30F(—30y 30 <1 <40 Observations of functions usually consist of data taken at
3 20 200 6000 - discrete points. The first step of PDA is to convert these
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noisy discrete points into smooth functions of tiniRa(nsay Ramsay, 2000 For the model in Eqg(2.1), the corresponding
& Silverman, 200% by finding appropriate values of the spline iteratively refined PDA objective function for spline fitting is
weighting coefficient$, .

Py min lZ(y(fi) — (1)
Y(6) = by p ¥y p(0) (2.6) L
p=1 dy~ 2
If the input information is also a set of discrete points (rather +AODE/ <dt + Wy~ w“uw) d (2.10)

than a known function) then the input curve can also be fitted

using splines: The penalty term with the weighting coefficiexgpg uses the
residuals of the ODE model (with the initial or current estimates
of the model parameters) to prevent over-fitting of the measure-
ment noise and to ensure that the fitted splines are consistent
with the fundamental ODE model.

Py
MN(I) = Zbu,pl/fu,p(t) (2-7)

p=1

In PDA applicationsP, andP,, the number of B-spline basis

functions used to approximat€r) and u(r), need not be the

same. The empirical functionp.(z) is determined by select-

ing spline-weighting coefficients to minimize the objective
function:

2.5. ODE parameter estimation

With the data expressed in functional form, the next step
of PDA is to estimate the parameters in the ODE model. If
min Z(y(ti) — o (11))? (2.8) the m_odel parameters are assum’ed to be time-varying (rather
by = than fixed) Ramsay and Silverman’s (200BPA algorithm can

approximate them using B-spline or other basis functions. In

which is the sum of the squared distances between the daffijs article, however, we consider a simpler problem with fixed
points and the spline functions at the observation times, parameters and a known input cunyg). B-spline expressions
Note that there is no requirement for the data to be equallyor y and di/dr can be substituted into the fundamental model, so
spaced intime; PDA readily accommodates non-uniformly samhat the unknown parameters appear in an algebraic expression,
pled data. The weighting coefficients to be selectedbgre:  resulting in relatively straightforward linear (if the ODE model
[by.1, by2, ... by.p,). is linear in the parameters) or nonlinear (if the ODE model is

In converting the raw data to functional form, there is anopnlinear in the parameters) least-squares estimation. For the

trade-off between the function being too smooth (so that iimodel in Eq(2.1)the least-squares objective function is
does not capture the detailed dynamics of the system) and not

being smooth enough (fitting splines to the system noise). In dy~ 2 2
his spline-based ODE parameter estimation approsatgh  S>PDA = / (dt T Wyy~+ w“”“) dr = /e(t) o
(1982) treated this trade-off problem by interactively adjust- (2.11)

ing the number and position of knots by hand until he was
satisfied with the smoothing that was obtained. Alternativelyevaluated over the time domain of the data. Note that in this
the extent of smoothing can be controlled by adding a penaltparameter estimation step, the spline coefficients are fixed, and
on higher-order derivatives of the splines. One objective oPptimal values of the model parameteus, (@ndw,) are deter-
the current work is to investigate the influence of higher-mined. Inthe PDA literature, only ODE models that are linear in
order derivative (HOD) roughness penalties (usedRbynsay, the parameters have been considered (except for the related work
1996 Ramsay & Ramsey, 2008chwetlick & Sclitze, 1995, by Varah (1982)which also considers nonlinear models). It is
1997 and others) on the resulting spline fit, and on the substraightforward to extend PDA for parameter estimation in ODE
sequent parameter estimates in the fundamental ODE modénodels that are nonlinear in the parameters, using iterative non-
In particular, we consider a second-order derivative (curvaturegljnear least-squares to estimate the model parameters. Note that
penalty: Varah (1982)sed a sum-of-squares objective funct@ge(ti)2
evaluated at times corresponding to the data points, which is dif-
>2d 29) ferent than the integral objective function in £g.11)

. d?y(1)

ﬁljln ;(Y(Ii) — y~ () + )»HOD/ <dt2
3. PDA example—SISO continuous stirred-tank reactor

Adjusting Anop influences the trade-off between the two model
extremes: a rapidly fluctuating function that passes as closely
as possible to the data points, including noise, and an overly To explore the merits of PDA and iPDA relative to traditional
smoothed function that cannot capture the detailed dynaminonlinear least-squares regression, we use a differential equation
behavior of the system. We also propose a new iteratively refineshodel Marlin, 2000 that describes the dynamic response of the
PDA (iPDA) procedure in which the second-order derivativeconcentration of reactadt(Ca) to changes in temperaturg)(
penalty is replaced by a model-based penalgdkman & ina CSTR with constant volumé/y:
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dCa F E ( 1 1 c 3.1. Spline fitting and parameter estimation results
A
T Tret

a V(CAO — Cp) — kref€Xp (_R

(3.1) As shown inFig. 1a, simple step-test experiments were sim-
ulated (using the linearized model) in whihwas decreased
The kinetic parameters to be estimatégy(and E/R) appear by 10K atr=4min. Concentration data were sampled every
nonlinearly in this ODE model, and the model is also nonlin-10s. Using PDA to estimate parametars andwr in the lin-
ear in an input/output sense. A centered Arrhenius expressiogarized model, the first step is to smooth the noisy output data
wherekret = ko eXp(—E/RTye) is the value of the kinetic rate to obtainCa~(z). Knots placed at 4.0 min intervals result in 13
constant evaluated at reference temperafiehas been used fourth-order B-spline basis functions for which 13 weighting
to improve the conditioning of the parameter estimation prob<oefficients are determined by minimizing the following objec-
lem (Watts, 1994 Marlin’s (2000) nominal parameter values tive function:
(E/IR=8330.1K andko=1.0x 1019min~1, corresponding to
kref:_o.461'mirrl for Tref=350K) are used as true values in min [Z(CA(H) _ CA~(fi))2] (3.5)
the simulations. bea |5
PDA was initially designed for parameter estimation in
empirical ODE models that are linear in the parameters and outthe input curve"(z), was assumed perfectly known. After fit-
puts. In this article, PDA is extended to accommodate nonlinedind the splines, the coefficienisc andwr were determined by
ODE models, but we begin by estimating parameters in a simJinimizing:
plified version of the model, which is linearized around steady- dc 2
state operating poinfas =0.576 kmolnr3 and7s=332Kand  pin [/ ( A~ () + wcCh () + wTT’(t)) dt] (3.6)
expressed in deviation variable€{ = Ca — Cas; T' =T — we,wt dt
L) Parameterses and E/R were calculated fromwc and wr.
dc) , , The integral in Eq(3.6) was computed numerically over the
dr +wcCp +wrT =0 (3-2)  40min simulation time for the dynamic experiment. A tradi-
tional NLS solver (MATLAB routine Isqcurvefit, which uses

The constant coefficienisc andwr are related to the original a Gauss—Newton iteration) was also used to estirkateind

model parameters by E/R. Computation times (on a Pentium 4 computer with a
. . 2.0GHz processor) required to estimate the parameters are

we = =2 +krefexp<— ( _ )) (3.3) shown m_TabIe 1 Initial guesses_for the parameters (10%_
1% R \Ts Tret below their true values) were required for NLS parameter esti-

mation, but not for PDA because the ODE model is linear

wr — krefg% ox < E ( 1 1 >) (3.4) In parametersoc andwr. Note that although the parameters
R T2 appear linearly in the right-hand side of the linearized differen-

tial equation, they will appear nonlinearly in the time solution
PDA parameter estimation in a more complex five-input, tWo-for Ca (). Traditional NLS estimation was performed in two
output, four-parameter nonlinear model has been investigated Rjjfferent ways for the linearized model: (i) using the analyt-
Poyton (2005)In our simulated experiments the reactant feedical solution for the ODE (row 1 infable ) and (ii) using
rate is steady dts=0.05 n? min—1, the inlet reactant concentra- repeated numerical solution of the ODE (row 2Tiable 9.
tion Cao is constant at 2.0 kmol i andV'= 1.0 P, We assume  Similar values for the parameter estimates were obtained using
that a fast temperature controller has been implemented, so thgéth NLS techniques. The computational effort associated with
changes in the temperature set point result in nearly instant®pA was slightly higher than that required using traditional
neous changes ifi(and inT"). NLS and the analytical ODE solution, but was considerably

Table 1
Computation times required for parameter estimation

Method 7(min)  Anop (Min®)  Aope (Min) Coincident knots ~ Sampling period (s) Standard error (kmohm Model type  CPU time (s)

NLSa - - - - 10 0.002 Linearized 0.08
NLSn - - - - 10 0.002 Linearized 1.78
PDA 4.0 0 0 No 10 0.002 Linearized 0.14
PDA 1.0 0 0 No 10 0.002 Linearized 0.55
PDA 4.0 0 0 Yes 10 0.002 Linearized 0.14
NLS - - - - 80 0.016 Nonlinear 1.73
PDA 4.0 0 0 Yes 80 0.016 Nonlinear 0.08
PDA 4.0 1.0 0 Yes 80 0.016 Nonlinear 0.39
PDA 4.0 10.0 0 Yes 80 0.016 Nonlinear 2.16
iPDA 4.0 0 1.0 Yes 80 0.016 Nonlinear 0.48
iPDA 4.0 0 10.0 Yes 80 0.016 Nonlinear 1.78
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for a step change in temperature (with4.0 min, A\jop =0, Aope=0). Con-
Fig. 2. Precision and bias of parameter estimates from traditional NLS and PDAentration was sampled every 10 s with a standard deviation of 0.002 kndol m
estimation using simulated data fromthe linearized CSTR model with a samplin¢®, simulated data; ———, true response; —, fitted spline).
rate of 10s and noise standard deviation of 0.002 kmdl ) kef estimates

o et hashce tately fllowing the step change. Decreasinthe time interval

coincident knots at the time of the step change in the reactor temperature. between knots from 4.0to 1.0 min, increased the number of basis
functions used to expreg& ~, improving the spline fit and the
resulting parameter estimates (§&g 2). However, the B-spline

less than when numerical ODE solutions were used fofit to the data (not shown) was still poor near the sharp change

NLS. in Ca.

Box plots inFig. 2summarize the distribution of the estimates  Spline fitting and parameter estimation were repeated using
for parameterges andE/R obtained using 500 simulated exper- two additional knots placed at 4.0 min. Using three coincident
iments, each with different random noise sequences. Resulknots @c1, Tc2, Tc3) Where the output changes abruptly creates
are shown for traditional NLS estimation and PDA with two two artificial splines with no length, so that first and second
different knot spacings/ € 4.0 min and/=1.0 min) during the derivativesimmediately to the left @§; do not need to match the
spline-fitting step. Bias in parameter estimates obtained fronsorresponding derivatives immediately to the rightgf. The
PDA improved considerably when closer knot placement waparameter estimates (right-most box plotg-ig. 2) obtained
used but, unfortunately, this simplest form of the PDA algo-from this improved spline fitKig. 4) were considerably better
rithm, with uniformly spaced knots, did not do a very good jobthan those obtained without the coincident knots. These results
of estimating the parameters compared to traditional NLS.  are consistent with those ¥arah (1982who advocated using

The B-spline approximation that was obtained by minimiz-coincident knots to improve spline fits when response variables
ing Eq.(3.5)is shown inFig. 3for a uniform knot spacing of change abruptly.

4.0 min (the %’ symbols indicate the knot positions). The spline  In the results presented so far, the output measurements had
fit is especially poor near the sharp change in slope immedienly a small amount of error and sampling was frequent, so good
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comadantknois at e e f the e change, Concerirston was sampled evdi 5 EMEc o seconc-order dervative penalies on esimates a4nd
P g P EIR obtained using the nonlinear CSTR model. Concentration was mea-

105 with a standard deviation of 0.002 kmot#n sured every 80 s with a standard deviation of 0.016 kndl ¢ii= 4.0 min, three
coincident knots at=4.0 min for PDA).

parameter estimates were obtained using regular PDA (with

coincident knots and=4.0 min), but the parameter estimates make PDA especially useful for parameter estimation in larger-
were not as precise as those obtained using traditional NLScale ODE and DAE models.

Fig. 5shows box plots for parameter estimates obtained using The two right-most box plots irFig. 5a and b show the
step-response data with the noise standard deviation increasedaffect of using a second-order-derivative penaltydp =1 and
0.016 kmol nT3 (from 0.002 inFig. 2), and less frequent sam- Anop = 10, respectively) in an attempt to reduce the amount of
pling (80 s rather than 10s). As expected, noisier data lead tappling when splines are fitted to the noisier data. Using a larger
higher variances in the parameter estimates from both traditionahlue of Ahop during spline fitting decreased the variance of
NLS and PDA. Parameter estimateshig. 5 were obtained the resulting model parameter estimates, but increased the bias.
using data generated fromthe nonlinear CSTR modelE®w)), Unfortunately, the penalty term forced the second derivative of
rather than the linearized model. Because the right-hand side the fitted splines to be smaller than the true second derivative of
this model is nonlinear in the parameters, initial guesses fothe output in time intervals where the curvature is large. Com-
parameter values were required for both NLS and PDA. Numerputing times for PDA with the nonlinear model and higher-order
ical Jacobians were used to obtain traditional NLS parameteatderivative penalty terms are shown Table 1 PDA gener-
estimates, but PDA estimates were obtained using an analytically requires only a fraction of the time required by traditional
Jacobian. One of the benefits of using PDA techniques is thalLS to estimate the parameters. When second-order deriva-
analytical Jacobians can easily be obtained by differentiatingjve penalties XHop #0) are included, the computation time
the right-hand side of the ODE(s) with respect to the parameincreases a little due to the additional effort required in fitting the
ters. The ease with which analytical Jacobians are obtained maplines.
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4. Iteratively refined principal differential analysis
0.8 g -
Inthe previous section, a simple two-step PDA procedure was ;
used to estimate the parameters. B-splines were fitted tothe data o7} T . , i
and then model parameters were estimated using the resulting | T .
splines and their derivatives. Unfortunately, poor spline fits from 0.6} i | | —I_ .
the first step sometimes led to poor model parameter estimates, | | | I
especially when output data were noisy and sparse. Here we™ 05} .
describe a nevizeratively refined PDA technique (iPDA), which T %““ =1 "1 -
iterates between the smoothing and estimation steps as follows, 04} I | I .
so that good spline fits, and hence good parameter estimates cai L | | |
be obtained: 0.3f | i J_ i
L
1. Estimate the model parameters using the fitted splines and o2k L L L L 3
: I : NLS PDA iPDA iPDA
their derivatives as in standard PDA. (ope=®  (ope=10)  (Agpe=10.0)
2. Obtain animproved spline fit using a model-based roughness(a) Mathiod
penalty (using values of the parameter estimates from step
one and an objective function like E.10) to ensure that 11000
the fitted splines are smooth and physically reasonable. T
3. lterate between steps one and two until parameter estimates 10000 | : | T _l_ .
converge. _ | | |
9000 | | | | .
Box plots inFig. 6show the effect that using iPDA with an ODE- y—l—\
based penalty has on the PDA estimates. Improvements in bias, Eaawian = — —=
and precision of the estimates are obtained@&sc increases. m 8000F | . T | |
Computing times become longer when larger penalties are used + | | |
(Table ) because more iterations between spline-fitting and 7000 | | L .
parameter estimation are required for the parameter estimates | 1 :
to converge. 6000 ull . . .
In Fig. 7, we can see the effect of the ODE-based penalty .
on the spline fit for a particular set of nonlinear step-response 5y . ; . L
data. The regular PDA spline fit ifig. 7a contains many fluc- NLS (APD‘EO) i Phg % (AiPDf;OO)
H H . . ODE™ ODE™ ' ODE """
tuations. Asiope increasesKig. 7b and c), these fluctuations -

are smoothed out, and the spline fit approximates the true output
more accurately. Fig. 6. Effectof iterative PDA penalty weight on estimates ok{g)and (b)E/R
obtained using the nonlinear CSTR model. Concentration was measured every

C . f 80 s with a standard deviation of 0.016 kmot#r(/ = 4.0 min, three coincident
5. Conclusions and future work knots atr=4.0 min for PDA).

Principal differential analysis can be used for estimating
parameters in continuous dynamic models that describe chergrated form of the model, which is used in traditional NLS
ical processes. Standard PDA consists of two steps: (i) fittingstimation.
B-splines (or other basis functions) to dynamic data, and (ii) Nevertheless, some difficulties can arise when PDA is used.
using the resulting empirical spline curves and their derivative®oor spline fits (especially when data are sparse or noisy) give
to convert the differential equations to algebraic expressions thamisleading derivative information, which results in inaccurate
are used for parameter estimation. Several benefits arise whparameter estimates. PDA parameter estimates for a nonlinear
PDA is used. Since the resulting parameter estimation probtcSTR model were less precise than those obtained using tradi-
lem is algebraic, repeated numerical simulation of differentiational NLS estimation, even when coincident spline knots were
equations is not required, and it is easy to determine analyticgdlaced at points corresponding to abrupt changes in the out-
Jacobians for PDA parameter estimation by simply differenput response. Penalties on second-order derivatives, which have
tiating the right-hand side of the model ODE(s). As a resultbeen used to prevent over-fitting of noise, resulted in biased
PDA requires considerably less computational effort than tradiparameter estimates because the fitted splines were not consis-
tional NLS estimation. As well, PDA does not require initial tent with the underlying behavior of the true process. As such,
values for the dynamic output variables to be either knowrwe do not recommend that higher-order-derivative penalties be
or estimated as additional parameters. Many PDA parametersed for PDA parameter estimation in fundamental models.
estimation problems may be better behaved than their NLS Instead, we recommend a new iteratively refined PDA algo-
counterparts; parameters (like kinetic rate constants) that appedthm (iPDA) which ensures that spline fits are consistent
linearly in differential equations behave nonlinearly in the inte-with the fundamental process behavior. The iPDA algorithm
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Fig. 7. Spline approximations using (a) regular PDA, (b) iPDA wiglye = 1.0,

and (c) iPDA withiopg=10.0. Concentration was measured every 80 s with
a standard deviation of 0.016 kmot#h (/=4.0 min, three coincident knots at

t=4.0min).

dard PDA. As the size of the model-based penalty coefficient
increased, precision of the parameter estimates approached the
precision obtained from standard NLS estimation; computation
times increased as more iPDA iterations were required for the
parameters to converge.

To date, PDA (and iPDA) has only been used for parame-
ter estimation in simple dynamic models, for which traditional
NLS estimation works well. PDA may have considerable bene-
fits for parameter estimation in larger-scale models, either on its
own, or as a computationally attractive means of obtaining good
initial parameter estimates to be used in traditional NLS estima-
tion. However, before PDA can be used for complex problems,
several issues need to be resolved. The most serious drawback
is that, in their current forms, PDA and iPDA are restricted to
dynamic models in which all of the states are measured (all of the
derivatives that appear in the model need to be converted to alge-
braic expressions). Other issues that need attention are related to
algorithm tuning. Better knowledge is required so that PDA users
can select enough B-spline knots (but not too many) so that good
spline fits can be obtained efficiently, and so that additional knots
can be added automatically in intervals where they are needed
to obtain good spline fits. Users also need to know how to select
appropriate weighting parameters for the model-based penalties
used in iPDA, so that a desirable balance between accuracy of
parameter estimates and computational effort is achieved. Fur-
thermore, it will be helpful to understand the implications of the
peculiar error structure in PDA (and iPDA) parameter estima-
tion. Residuals for the parameter estimation step of PDA (see Eq.
(2.11)) are in the differentiated rather than the integrated form
of the model, whereas residuals for the spline-fitting step are in
the regular output variables. PDA and iPDA may be well suited
for dynamic parameter estimation problems in which different
types of error arise from a variety of sources. Uncorrelated errors
associated with measurement noise are consistent with the resid-
uals from the spline-fitting step; whereas, correlated errors due
to random disturbances that pass through the dynamic process
are consistent with the residuals that are minimized during the
parameter estimation step (residuals in the differentiated form
of the model).

It will be important to generate information about the uncer-
tainty of the parameter estimates that are obtained using iPDA.
In the limiting case where the modeler assumes (as when using
NLS) that the random errors are independent (no correlated
errors due to disturbances), it is appropriate to use a very large
value of the weighting coefficieniopg, to obtain parameter
estimates that are unbiased and spline fits that closely approx-
imate the ODE solution. In this situation, confidence intervals
for model parameters obtained using iPDA become identical
to those obtained using NL&drziri, 2009. In more complex
situations, when uncorrelated measurement errors and corre-
lated process disturbances are both present, iPDA users should
select a smaller value afppg that takes into account the rela-
tive variances of the two types of error. In our current research

improves the initial spline fit using a model-based penalty termwe are developing methods for appropriate selectioh«fe
When iPDA was applied to the CSTR model using sparse andnd expressions to describe parameter uncertainty for multi-
noisy data, the resulting parameter estimates were unbiasedsponse ODE parameter estimation problems with both types
and were much more precise than those obtained using staaf random error.
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