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Abstract

Principal differential analysis (PDA) is an alternative parameter estimation technique for differential equation models in which basis functions
(e.g., B-splines) are fitted to dynamic data. Derivatives of the resulting empirical expressions are used to avoid solving differential equations when
estimating parameters. Benefits and shortcomings of PDA were examined using a simple continuous stirred-tank reactor (CSTR) model. Although
PDA required considerably less computational effort than traditional nonlinear regression, parameter estimates from PDA were less precise.
S roblems are
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parse and noisy data resulted in poor spline fits and misleading derivative information, leading to poor parameter estimates. These p
ddressed by a new iterative algorithm (iPDA) in which the spline fits are improved using model-based penalties. Parameter estimates
ere unbiased and more precise than those from standard PDA. Issues that need to be resolved before iPDA can be used for more co
re discussed.
2005 Elsevier Ltd. All rights reserved.
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. Introduction

Parameter estimation in dynamic models is important in many
elds of science and engineering because many physical, chemi-
al and biological processes are described by systems of ordinary
ifferential equations (ODEs) with unknown parameters. For
hemical engineers, the benefits of developing dynamic mecha-
istic models with accurate parameter estimates have increased

n recent years due to the development of process optimiza-
ion and control technologies that can use fundamental models
Biegler & Grossman, 2004; El-Farra & Christofides, 2003;
agy & Braatz, 2003).
Parameter estimation is a difficult and important step in the

evelopment of models that are consistent with fundamental
ehavior of the physical process and consistent with available
ata. Estimates of unknown parameters are obtained using mea-
urements from dynamic experiments, which invariably contain
andom errors. Numerous system identification techniques are

∗ Corresponding author. Tel.: +1 613 533 2768; fax: +1 613 533 6637.

available for estimating parameters in discrete-time dyn
models (Ljung, 1999). The current article is focused on param
ter estimation in continuous-time ordinary differential equa
(ODE) or differential-algebraic equation (DAE) models that
nonlinear in the parameters.

When estimating model parameters, the objective is to d
mine appropriate parameter values so that errors betwee
outputs of the estimated model and the measured data ar
imized in some sense, i.e., the predicted response values
the model should match the measurements as closely as
ble. Most commonly used parameter estimation technique
based on least-squares regression, which involves minimiz
of the sum of squared differences between the measure
and the model predictions. Generalized least-squares regr
and multi-response estimation are described in detail bySebe
and Wild (1989)andBates and Watts (1988).

Ogunnaike and Ray (1994)describe the iterative nonline
least-squares (NLS) procedure that is commonly used to
mate parameters in ODE (or DAE) models that do not h
analytical solutions. First the ODEs (or DAEs) are solved nu
ically, using initial guesses for the parameter values, yiel
E-mail address: mcauleyk@chee.queensu.ca (K.B. McAuley). simulations of the dynamic experiments. Model predictions are
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compared with measured responses, and an optimization algo-
rithm determines a new set of parameter estimates that should
result in better model predictions. Sensitivity equations can be
solved along with the model ODEs to obtain the Jacobian of
the response variables with respect to the parameters (Leis &
Kramer, 1988), so that the optimizer can determine appropriate
search directions for improved parameter values. The alterna-
tives are to use either a numerical Jacobian or a direct-search
optimizer, requiring additional dynamic simulations with per-
turbations in each of the parameters. After new parameter values
are determined by the optimizer, the ODEs (or DAEs) are solved
numerically using the updated parameters and the new predic-
tions are compared with the data. Iteration between parameter
updating and computation of numerical solutions continues until
convergence criteria for the parameters are met or until no
significant improvement in the objective function is obtained.
Unfortunately, this method can be time consuming, with most
of the computational effort arising from repeated numerical solu-
tion of the differential equations. Initial values for all of the states
are either assumed to be known, or must be estimated along
with the model parameters. Numerous algorithms have been
developed within this framework to obtain improved parame-
ter estimates with reduced computational effort (e.g.,Bates &
Watts, 1985; Biegler, Damiano, & Blau, 1986; Dov̀ı, Arato, &
Maga, 1985; Kalogerakis & Luus, 1983; Mansouri & Kerńevev,
1998; Stewart, Caracotsios, & Sorensen, 1992).
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unlikely that new algorithms for parameter estimation in differ-
ential equation models will be adopted on the basis of reduced
computation time alone. Additional benefits and applicability to
a large class of difficult parameter estimation problems will need
to be proven before PDA techniques are adopted by more than a
few curious users. The first step toward uncovering potential ben-
efits is to gain an improved understanding of PDA techniques, so
that existing problems can be alleviated and so that opportunities
can be recognized.

In this article, we examine the influence of various speci-
fications (B-spline knot placement and higher-order derivative
penalties) that affect the quality of parameter estimates obtained
from PDA, and we propose a new iteratively refined PDA algo-
rithm that ensures good spline fits and parameter estimates. We
test this methodology using linearized and nonlinear versions
of a simple dynamic continuous stirred-tank reactor (CSTR)
model, and we identify issues that need to be resolved before
PDA techniques can enjoy widespread use for parameter esti-
mation in more complex models of chemical processes.

2. Principal differential analysis

PDA is a term used byRamsay (1996)to describe a parameter
estimation method wherein coefficients in linear, possibly time-
varying, ODEs are fitted empirically from data. Ramsay called
his technique principal differential analysis because of analo-
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Varah (1982)used an alternative parameter estimation t
ique, based on the earlier work ofSwartz and Bremerman
1975)andBenson (1979)that does not require repeated num
cal solutions of the ODEs. In this methodology, and in a rel
echnique called principal differential analysis (PDA) (Ramsay
996), discrete measurements of the output variables,y, are
tted empirically using splines, which are then differentia
ith respect to time to obtain estimated time-derivative cur
y/dt. This time-derivative information is then substituted i
he ODEs, converting the parameter estimation problem
dynamic optimization problem into a much simpler algeb
ptimization problem that can be solved using either linear l
quares (if the ODEs are linear in the parameters) or nonl
east-squares (if the ODEs are nonlinear in the parameters)
echniques (Ramsay, 1996; Varah, 1982) differ from commonly
sed nonlinear least-squares methods for dynamic model

rom an early spline-based method (Tang, 1971) and its iterative
xtension byMadar, Abonyi, Roubos, and Szeifert (2003). In
DA, parameter values are selected to minimize squared
als in the differential form of the model, (dy/dt − dŷ/dt)2,
ather than the traditional integrated form of the model, (y − ŷ)2.
arly on, Swartz and Bremermann (1975)and Varah (1982

dentified the main benefits of PDA techniques (they are
omputationally expensive than common parameter estim
echniques for dynamic models, and initial conditions for
utput variables need not be known) as well as the main p

ems that limit their use (poor spline fits can result in mislea
ime-derivative information, which can lead to poor param
stimates). Computing resources have advanced greatly ov
ast 30 years, making traditional least-squares paramete
ation techniques easier and less time-consuming for user
,
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ies to principal component analysis (PCA), in which empir
inear algebraic-equation models are fitted using multiva
ata.Ramsay and Silverman (1997, 2005)focused their effort
n problems in which dynamic systems respond to unkn
mpirical, time-varying forcing functions. PDA has been u

o fit linear differential equation models for a diverse arra
pplications including handwriting analysis (Ramsay, 2000),
nalysis of the movement of the lips during speech (Lucero,
002; Ramsay & Munhall, 1996), economic modeling (Ramsay
Ramsey, 2002), and meteorological modeling (Ramsay &

ilverman, 2002, 2005). In this article, we focus on parame
stimation in fundamental ODE models of chemical proce
ith known forcing inputs (sometimes called exogenous in

n the system identification literature).
PDA is part of a broader, relatively new area in statistics ca

unctional data analysis (FDA). The main concept in FDA i
ccount for the underlying smooth functional behavior of a
ess response, instead of viewing the output as a collecti
iscrete points.Ramsay and Silverman (2005)argue that, b
sing this functional approach, the natural smoothness o
rocesses from which the data are taken can be exploited,
ay allow us to see things that a discrete-data approach w
ot. In this article we explore the potential benefits and p

ems associated with using PDA for parameter estimation
imple continuous stirred-tank reactor (CSTR) model, an
ompare the parameter estimation results obtained using P
hose obtained using traditional nonlinear least-squares es
ion. In particular, we investigate the effects of knot placem
nd higher-order derivative penalties during spline fitting on
uality of the spline fit and the resulting parameter estimates
lso propose a new iteratively refined PDA technique (iPD
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This technique involves iteration between (1) fitting of splines,
which are penalized using the fundamental ODE model (with
current estimates of the model parameters) and (2) estimation
of the parameters in the fundamental model, using the estimated
spline coefficients from step (1). Using the squared residuals
from the differential equation as a penalty during spline fitting
ensures that the fitted splines are consistent with the behavior of
the physical system, and leads to improved parameter estimates.

2.1. PDA terminology and notation

When describing PDA for linear ODE models,Ramsay and
Silverman (2005)view the system dynamics as alinear dif-
ferential operator (LDO) acting upon the process variables.
For example, consider a simple first-order, single-input single-
output (SISO) ODE model:

dy

dt
+ wyy + wuu = 0 (2.1)

If the process gain and time constant areKp andτ, respectively,
then the weighting coefficientswy andwu in the output (y) and
input (u) variable terms arewy = 1/τ andwu = −Kp/τ, respec-
tively. In the PDA literature, this system would be described
using a linear differential operatorL operating ony andu:

L[y, u] = D1y + wyD
0y + wuD

0u = 0 (2.2)
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in all FDA techniques (Ramsay & Silverman, 2005), the dis-
crete data points for an experimental run{y(ti), u(ti)} are used
to determine approximate continuous-time traces for the under-
lying process outputs. These empirical curves are expressed in
terms of a fixed set ofP known basis functionsψP(t), p = 1, . . .,
P, which are continuous functions of time. There are a number
of choices available for the type of basis function to be used:
Fourier series, polynomials, wavelets, and splines. B-splines are
the most common choice.

2.2. General properties of spline functions

Splines are piecewise polynomial functions that, because of
their simplicity and flexibility, are used for a variety of applica-
tions such as interpolating between data points and smoothing
of noisy data. Spline smoothing involves dividing up the domain
of the data into segments separated by knots, with multiple data
points between the knots. The function describing the data is
approximated as a weighted sum of basis functions, and a least-
squares objective function is used to fit this smooth function to
the raw data. When using piecewise cubic splines, there are four
parameters for each cubic equation (y∼ = ax3 + bx2 + cx + d), and
three continuity constraints (zeroth, first, and second derivatives
match for adjacent splines) at each knot. Throughout this article
we use the subscript∼ to indicate the prediction from an empir-
ical spline model, rather than the prediction from a fundamental
d oach
t eter-
m can
b d-
p ach is
s tions
i dent
v can
l r
&

2

asis
f -
w ain
o ro
e
b inter-
v ient-
e een
u
K
1 -
t tion
o used
t xam-
p cini
( r a
t rst-
o uares
y y u

here the superscripts (1 or 0) on the differentials (D) refer to the
rst and zeroth derivatives, respectively, with respect to time
he subscripts (y oru) denote whether the input or output is be
ifferentiated. Eq.(2.2) can be extended to describe high
rder differential equation models (Ramsay & Ramsey, 200)
r multi-input multi-output (MIMO) systems with interactin
rst-order ODEs (Poyton, 2005). However, for the remainder
his paper we will focus only on systems modeled by a si
rst-order ODE. We will also forego the use of the LDO nota
f the PDA literature, and will use the more familiar notation
q.(2.1) instead.
If the model parameterswy andwu for the true system we

nown, and there were no measurement noise or proces
urbances, then the left-hand side of Eq.(2.1)would equal zer
xactly. The idea of PDA is to approximate the derivative c
sing the measured data, and then estimate the parameters
dy/dt) + wyy + wuu is as close as possible to zero. By do
his, we are minimizing some function of the residual curvee(t),
heree(t) is defined by

dy

dt
+ wyy + wuu = e(t) (2.3)

n standard PDA, a least-squares approach is used to min
he function:

SEPDA =
∫ (

dy

dt
+ wyy + wuu

)2

dt =
∫
e(t)2 dt (2.4)

here the integration is over the time horizon of the data
arameter estimation using multiple dynamic experimen
ultiple outputs, several integral terms are added togethe
s-

hat

e

r
s

ifferential equation model. A restricted least-squares appr
hat accounts for the continuity constraints can be used to d
ine the cubic equation coefficients, but this approach
e cumbersome (Seber & Lee, 2003). Sometimes a truncate
ower-series method is used instead. Though this appro
impler, it also has computational problems. Spline predic
n intervals corresponding to large values of the indepen
ariable depend on sums of many polynomial terms, which
ead to an ill-conditioned coefficient-estimation problem (Sebe

Lee, 2003).

.3. B-splines

A computationally better approach is to use B-spline b
unctions, consisting ofRth order (or (R − 1)th degree) piece
ise polynomials. Each B-spline is positive within a dom
f R intervals (defined byR + 1 consecutive knots), and ze
lsewhere (de Boor, 1978; Seber & Lee, 2003). Since B-spline
asis functions are zero everywhere except over a finite
al (referred to as compact support), the weighting-coeffic
stimation problem is well conditioned. B-splines have b
sed in many engineering applications (e.g.,Bahadir, 2003;
im, 1998; Lainiotis & Deshpande, 1974; Shariff & Moser,
998; Wang, Keast, & Muir, 2004) including numerical solu

ion of partial differential equations (PDEs) and approxima
f probability density functions. B-splines have also been

o aid parameter estimation in fundamental models. For e
le, Thomaseth, Kautzky-Wilier, Ludvik, Prager, and Pa
1996) used B-splines to provide an empirical model fo
ime-varying parameter (or unknown forcing input) in a fi
rder ODE kinetic model, and then used nonlinear least-sq
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to simultaneously estimate the fixed parameters in the funda-
mental model and the empirical spline coefficients. The more
recent PDA applications referenced in this article (Lucero, 2002;
Ramsay, 2000; Ramsay & Ramsey, 2002; Varah, 1982) have
used B-splines to construct smooth curves through the dynamic
response data, whereas the very early work (Benson, 1979;
Swartz & Bremermann, 1975) used standard cubic splines.

To illustrate how B-splines can be used to approximate a
function, consider the set of data inFig. 1a. These data are the
simulated response of reactant concentration to a step change
in reactor temperature set point, for a linearized CSTR model
(described in detail in Section3). Fig. 1 demonstrates how
B-spline basis functions are combined to approximate the step-
response data as a continuous empirical time trace. The weight-
ing coefficients used for combining the B-spline basis functions
in Fig. 1b are shown inFig. 1c. It is evident, especially during the
first 6 min of the simulation, that seven B-spline basis functions
(Fig. 1a) are not sufficient to capture this response very well. As
we will show in Section3.1, improved spline fits are obtained
when more basis functions are used, and when spline knots are
carefully placed.

Unfortunately, poor spline fits can result in misleading infor-
mation about dy/dt, causing problems for spline-based param-
eter estimation methods. Better spline fits can be obtained by
careful choice of the location of the knots, or by penalties on
high-order derivatives during the spline-fitting procedure (de

ed

ion
e

or

Fig. 1. (a) Spline fit to step-response data using seven B-spline basis functions;
(b) seven B-spline basis functions used to construct spline fit; (c) seven estimated
weights for B-spline basis functions.

2.4. Determining spline coefficients from discrete data

Observations of functions usually consist of data taken at
discrete points. The first step of PDA is to convert these
Boor, 1978; Elfving & Andersson, 1998; Schwetlick & Scḧutze,
1995, 1997; Varah, 1982).

When using B-splines, interior knots are placed at timesτ1,
τ2, . . ., τκ (whereτ1 < τ2< · · · < τκ) between the endpoints of the
data domain, with exterior knotsτ0 andτκ+1 placed at the ends.
The B-splines are generated by starting the first splineR − 1
artificial intervals to the left of the lower boundary pointτ0; the
final spline extendsR − 1 artificial intervals to the right of the
upper boundary point,τκ+1. Fig. 1b shows a plot of seven B-
spline basis functions of fourth order (cubic B-splines), defin
by knots placed at intervals of 10 min, starting att = 0 min. Each
of these B-splines is positive over a domain ofR = 4 intervals,
or a time of 40 min, and zero elsewhere. B-spline basis funct
ψ1 extends three artificial intervals to the left, with only th
fourth interval falling into the domain of the data.ψ2 extends
two artificial intervals to the left andψ4 fits entirely within the
domain of the data.

For fourth-order B-splines, like those inFig. 1b, each B-
spline is composed of four piecewise cubic polynomials. F
example, inFig. 1b, B-splineψ4 is composed of the following
cubics:

ψ4(t) =




t3

6000
0 ≤ t < 10

−1

3
+ t

20
+ (t − 10)2

200
− (t − 10)3

2000
10 ≤ t < 20

2

3
− (t − 20)2

100

(t − 20)3

2000
20 ≤ t < 30

5

3
− t

20
+ (t − 30)2

200

(t − 30)3

6000
30 ≤ t ≤ 40

(2.5)



702 A.A. Poyton et al. / Computers and Chemical Engineering 30 (2006) 698–708

noisy discrete points into smooth functions of time (Ramsay
& Silverman, 2005) by finding appropriate values of the spline
weighting coefficientsby,p:

y∼(t) =
Py∑
p=1

by,pψy,p(t) (2.6)

If the input information is also a set of discrete points (rather
than a known function) then the input curve can also be fitted
using splines:

u∼(t) =
Pu∑
p=1

bu,pψu,p(t) (2.7)

In PDA applications,Py andPu, the number of B-spline basis
functions used to approximatey(t) and u(t), need not be the
same. The empirical functiony∼(t) is determined by select-
ing spline-weighting coefficients to minimize the objective
function:

min
by

∑
i

(y(ti) − y∼(ti))
2 (2.8)

which is the sum of the squared distances between the data
points and the spline functions at the observation times,ti.
Note that there is no requirement for the data to be equally
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Ramsay, 2000). For the model in Eq.(2.1), the corresponding
iteratively refined PDA objective function for spline fitting is

min
by

[∑
i

(y(ti) − y∼(ti))
2

+λODE

∫ (
dy∼
dt

+ ŵyy∼ + ŵuu∼
)2

dt

]
(2.10)

The penalty term with the weighting coefficientλODE uses the
residuals of the ODE model (with the initial or current estimates
of the model parameters) to prevent over-fitting of the measure-
ment noise and to ensure that the fitted splines are consistent
with the fundamental ODE model.

2.5. ODE parameter estimation

With the data expressed in functional form, the next step
of PDA is to estimate the parameters in the ODE model. If
the model parameters are assumed to be time-varying (rather
than fixed),Ramsay and Silverman’s (2005)PDA algorithm can
approximate them using B-spline or other basis functions. In
this article, however, we consider a simpler problem with fixed
parameters and a known input curveu(t). B-spline expressions
for y and dy/dt can be substituted into the fundamental model, so

ssion,
del
el is
or the

this
, and
-
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d work
t is
DE
non-

te that

s dif-

nal
uation
f the
paced in time; PDA readily accommodates non-uniformly s
led data. The weighting coefficients to be selected areby =
by,1, by,2, . . . , by,Py ].

In converting the raw data to functional form, there i
rade-off between the function being too smooth (so th
oes not capture the detailed dynamics of the system) an
eing smooth enough (fitting splines to the system noise
is spline-based ODE parameter estimation approach,Varah
1982) treated this trade-off problem by interactively adju
ng the number and position of knots by hand until he
atisfied with the smoothing that was obtained. Alternativ
he extent of smoothing can be controlled by adding a pe
n higher-order derivatives of the splines. One objectiv

he current work is to investigate the influence of hig
rder derivative (HOD) roughness penalties (used byRamsay
996; Ramsay & Ramsey, 2002; Schwetlick & Scḧutze, 1995
997 and others) on the resulting spline fit, and on the
equent parameter estimates in the fundamental ODE m
n particular, we consider a second-order derivative (curva
enalty:

in
by


∑

i

(y(ti) − y∼(ti))
2 + λHOD

∫ (
d2y∼(t)

dt2

)2

dt


 (2.9)

djusting λHOD influences the trade-off between the t
xtremes: a rapidly fluctuating function that passes as cl
s possible to the data points, including noise, and an o
moothed function that cannot capture the detailed dyn
ehavior of the system. We also propose a new iteratively re
DA (iPDA) procedure in which the second-order deriva
enalty is replaced by a model-based penalty (Heckman &
-
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that the unknown parameters appear in an algebraic expre
resulting in relatively straightforward linear (if the ODE mo
is linear in the parameters) or nonlinear (if the ODE mod
nonlinear in the parameters) least-squares estimation. F
model in Eq.(2.1) the least-squares objective function is

SSEPDA =
∫ (

dy∼
dt

+ wyy∼ + wuu∼
)2

dt =
∫
e(t)2 dt

(2.11)

evaluated over the time domain of the data. Note that in
parameter estimation step, the spline coefficients are fixed
optimal values of the model parameters (wy andwu) are deter
mined. In the PDA literature, only ODE models that are linea
the parameters have been considered (except for the relate
by Varah (1982)which also considers nonlinear models). I
straightforward to extend PDA for parameter estimation in O
models that are nonlinear in the parameters, using iterative
linear least-squares to estimate the model parameters. No
Varah (1982)used a sum-of-squares objective function

∑
ie(ti)

2

evaluated at times corresponding to the data points, which i
ferent than the integral objective function in Eq.(2.11).

3. PDA example—SISO continuous stirred-tank reactor
model

To explore the merits of PDA and iPDA relative to traditio
nonlinear least-squares regression, we use a differential eq
model (Marlin, 2000) that describes the dynamic response o
concentration of reactantA(CA) to changes in temperature (T)
in a CSTR with constant volume (V):
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dCA

dt
= F

V
(CA0 − CA) − kref exp

(
−E
R

(
1

T
− 1

Tref

))
CA

(3.1)

The kinetic parameters to be estimated (kref and E/R) appear
nonlinearly in this ODE model, and the model is also nonlin-
ear in an input/output sense. A centered Arrhenius expression,
wherekref = k0 exp(−E/RTref) is the value of the kinetic rate
constant evaluated at reference temperatureTref, has been used
to improve the conditioning of the parameter estimation prob-
lem (Watts, 1994). Marlin’s (2000)nominal parameter values
(E/R = 8330.1 K andk0 = 1.0× 1010 min−1, corresponding to
kref = 0.461 min−1 for Tref = 350 K) are used as true values in
the simulations.

PDA was initially designed for parameter estimation in
empirical ODE models that are linear in the parameters and out-
puts. In this article, PDA is extended to accommodate nonlinear
ODE models, but we begin by estimating parameters in a sim-
plified version of the model, which is linearized around steady-
state operating pointCAs = 0.576 kmol m−3 andTs = 332 K and
expressed in deviation variables (C′

A = CA − CAs; T ′ = T −
Ts):

dC′
A

dt
+ wCC

′
A + wTT

′ = 0 (3.2)

T al
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w

w

P wo-
o ed b
P eed
r a-
t e
t o th
c anta
n

3.1. Spline fitting and parameter estimation results

As shown inFig. 1a, simple step-test experiments were sim-
ulated (using the linearized model) in whichT was decreased
by 10 K at t = 4 min. Concentration data were sampled every
10 s. Using PDA to estimate parameterswC andwT in the lin-
earized model, the first step is to smooth the noisy output data
to obtainCA∼(t). Knots placed at 4.0 min intervals result in 13
fourth-order B-spline basis functions for which 13 weighting
coefficients are determined by minimizing the following objec-
tive function:

min
bCA

[∑
i

(CA(ti) − CA∼(ti))
2

]
(3.5)

The input curve,T′(t), was assumed perfectly known. After fit-
ting the splines, the coefficientswC andwT were determined by
minimizing:

min
wC,wT

[∫ (
dC′

A∼(t)

dt
+ wCC

′
A∼(t) + wTT

′(t)
)2

dt

]
(3.6)

Parameterskref and E/R were calculated fromwC and wT.
The integral in Eq.(3.6) was computed numerically over the
40 min simulation time for the dynamic experiment. A tradi-
tional NLS solver (MATLAB routine lsqcurvefit, which uses
a
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he constant coefficientswC andwT are related to the origin
odel parameters by
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V
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T = kref
E

R
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T 2
s
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(
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R

(
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))
(3.4)

DA parameter estimation in a more complex five-input, t
utput, four-parameter nonlinear model has been investigat
oyton (2005). In our simulated experiments the reactant f

ate is steady atFs = 0.05 m3 min−1, the inlet reactant concentr
ion CA0 is constant at 2.0 kmol m−3 andV = 1.0 m3. We assum
hat a fast temperature controller has been implemented, s
hanges in the temperature set point result in nearly inst
eous changes inT (and inT′).

able 1
omputation times required for parameter estimation

ethod I (min) λHOD (min3) λODE (min) Coincident knots

LSa – – – –
LSn – – – –
DA 4.0 0 0 No
DA 1.0 0 0 No
DA 4.0 0 0 Yes
LS – – – –
DA 4.0 0 0 Yes
DA 4.0 1.0 0 Yes
DA 4.0 10.0 0 Yes

PDA 4.0 0 1.0 Yes
PDA 4.0 0 10.0 Yes
y

at
-

Gauss–Newton iteration) was also used to estimatekref and
/R. Computation times (on a Pentium 4 computer wit
.0 GHz processor) required to estimate the parameter
hown in Table 1. Initial guesses for the parameters (1
elow their true values) were required for NLS parameter
ation, but not for PDA because the ODE model is lin

n parameterswC andwT. Note that although the paramet
ppear linearly in the right-hand side of the linearized diffe

ial equation, they will appear nonlinearly in the time solu
or CA(t). Traditional NLS estimation was performed in t
ifferent ways for the linearized model: (i) using the ana

cal solution for the ODE (row 1 inTable 1) and (ii) using
epeated numerical solution of the ODE (row 2 inTable 1).
imilar values for the parameter estimates were obtained
oth NLS techniques. The computational effort associated
DA was slightly higher than that required using traditio
LS and the analytical ODE solution, but was consider

pling period (s) Standard error (kmol m−3) Model type CPU time (s

0.002 Linearized 0.08
0.002 Linearized 1.78
0.002 Linearized 0.14
0.002 Linearized 0.55
0.002 Linearized 0.14
0.016 Nonlinear 1.73
0.016 Nonlinear 0.08
0.016 Nonlinear 0.39
0.016 Nonlinear 2.16
0.016 Nonlinear 0.48
0.016 Nonlinear 1.78
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Fig. 2. Precision and bias of parameter estimates from traditional NLS and PDA
estimation using simulated data from the linearized CSTR model with a sampling
rate of 10 s and noise standard deviation of 0.002 kmol m−3 (a) kref estimates
and (b)E/R estimates. PDA results are shown for uniform knot spacings of
4.0 and 1.0 min. PDAc refers to PDA parameter estimates obtained using three
coincident knots at the time of the step change in the reactor temperature.

less than when numerical ODE solutions were used for
NLS.

Box plots inFig. 2summarize the distribution of the estimates
for parameterskref andE/R obtained using 500 simulated exper-
iments, each with different random noise sequences. Results
are shown for traditional NLS estimation and PDA with two
different knot spacings (I = 4.0 min andI = 1.0 min) during the
spline-fitting step. Bias in parameter estimates obtained from
PDA improved considerably when closer knot placement was
used but, unfortunately, this simplest form of the PDA algo-
rithm, with uniformly spaced knots, did not do a very good job
of estimating the parameters compared to traditional NLS.

The B-spline approximation that was obtained by minimiz-
ing Eq. (3.5) is shown inFig. 3 for a uniform knot spacing of
4.0 min (the ‘×’ symbols indicate the knot positions). The spline
fit is especially poor near the sharp change in slope immedi-

Fig. 3. B-spline approximation to output response from linearized CSTR model
for a step change in temperature (withI = 4.0 min,λHOD = 0, λODE = 0). Con-
centration was sampled every 10 s with a standard deviation of 0.002 kmol m−3

(�, simulated data; – – –, true response; —, fitted spline).

ately following the step change. DecreasingI, the time interval
between knots from 4.0 to 1.0 min, increased the number of basis
functions used to expressCA∼, improving the spline fit and the
resulting parameter estimates (seeFig. 2). However, the B-spline
fit to the data (not shown) was still poor near the sharp change
in CA.

Spline fitting and parameter estimation were repeated using
two additional knots placed att = 4.0 min. Using three coincident
knots (τc1, τc2, τc3) where the output changes abruptly creates
two artificial splines with no length, so that first and second
derivatives immediately to the left ofτc1do not need to match the
corresponding derivatives immediately to the right ofτc3. The
parameter estimates (right-most box plots inFig. 2) obtained
from this improved spline fit (Fig. 4) were considerably better
than those obtained without the coincident knots. These results
are consistent with those ofVarah (1982)who advocated using
coincident knots to improve spline fits when response variables
change abruptly.

In the results presented so far, the output measurements had
only a small amount of error and sampling was frequent, so good
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Fig. 4. B-spline approximation to output response from linearized CSTR model
for a step change in temperature (withI = 4.0 min,λHOD = 0,λODE = 0) and three
coincident knots at the time of the step change. Concentration was sampled every
10 s with a standard deviation of 0.002 kmol m−3.

parameter estimates were obtained using regular PDA (with
coincident knots andI = 4.0 min), but the parameter estimates
were not as precise as those obtained using traditional NLS.
Fig. 5 shows box plots for parameter estimates obtained using
step-response data with the noise standard deviation increased to
0.016 kmol m−3 (from 0.002 inFig. 2), and less frequent sam-
pling (80 s rather than 10 s). As expected, noisier data lead to
higher variances in the parameter estimates from both traditional
NLS and PDA. Parameter estimates inFig. 5 were obtained
using data generated from the nonlinear CSTR model (Eq.(3.1)),
rather than the linearized model. Because the right-hand side in
this model is nonlinear in the parameters, initial guesses for
parameter values were required for both NLS and PDA. Numer-
ical Jacobians were used to obtain traditional NLS parameter
estimates, but PDA estimates were obtained using an analytical
Jacobian. One of the benefits of using PDA techniques is that
analytical Jacobians can easily be obtained by differentiating
the right-hand side of the ODE(s) with respect to the parame-
ters. The ease with which analytical Jacobians are obtained may

Fig. 5. Effect of second-order derivative penalties on estimates of (a)kref and
(b) E/R obtained using the nonlinear CSTR model. Concentration was mea-
sured every 80 s with a standard deviation of 0.016 kmol m−3 (I = 4.0 min, three
coincident knots att = 4.0 min for PDA).

make PDA especially useful for parameter estimation in larger-
scale ODE and DAE models.

The two right-most box plots inFig. 5a and b show the
effect of using a second-order-derivative penalty (λHOD = 1 and
λHOD = 10, respectively) in an attempt to reduce the amount of
rippling when splines are fitted to the noisier data. Using a larger
value ofλHOD during spline fitting decreased the variance of
the resulting model parameter estimates, but increased the bias.
Unfortunately, the penalty term forced the second derivative of
the fitted splines to be smaller than the true second derivative of
the output in time intervals where the curvature is large. Com-
puting times for PDA with the nonlinear model and higher-order
derivative penalty terms are shown inTable 1. PDA gener-
ally requires only a fraction of the time required by traditional
NLS to estimate the parameters. When second-order deriva-
tive penalties (λHOD �= 0) are included, the computation time
increases a little due to the additional effort required in fitting the
splines.
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4. Iteratively refined principal differential analysis

In the previous section, a simple two-step PDA procedure was
used to estimate the parameters. B-splines were fitted to the data,
and then model parameters were estimated using the resulting
splines and their derivatives. Unfortunately, poor spline fits from
the first step sometimes led to poor model parameter estimates,
especially when output data were noisy and sparse. Here we
describe a newiteratively refined PDA technique (iPDA), which
iterates between the smoothing and estimation steps as follows,
so that good spline fits, and hence good parameter estimates can
be obtained:

1. Estimate the model parameters using the fitted splines and
their derivatives as in standard PDA.

2. Obtain an improved spline fit using a model-based roughness
penalty (using values of the parameter estimates from step
one and an objective function like Eq.(2.10)) to ensure that
the fitted splines are smooth and physically reasonable.

3. Iterate between steps one and two until parameter estimates
converge.

Box plots inFig. 6show the effect that using iPDA with an ODE-
based penalty has on the PDA estimates. Improvements in bias
and precision of the estimates are obtained asλODE increases.
Computing times become longer when larger penalties are used
( and
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Fig. 6. Effect of iterative PDA penalty weight on estimates of (a)kref and (b)E/R
obtained using the nonlinear CSTR model. Concentration was measured every
80 s with a standard deviation of 0.016 kmol m−3 (I = 4.0 min, three coincident
knots att = 4.0 min for PDA).

grated form of the model, which is used in traditional NLS
estimation.

Nevertheless, some difficulties can arise when PDA is used.
Poor spline fits (especially when data are sparse or noisy) give
misleading derivative information, which results in inaccurate
parameter estimates. PDA parameter estimates for a nonlinear
CSTR model were less precise than those obtained using tradi-
tional NLS estimation, even when coincident spline knots were
placed at points corresponding to abrupt changes in the out-
put response. Penalties on second-order derivatives, which have
been used to prevent over-fitting of noise, resulted in biased
parameter estimates because the fitted splines were not consis-
tent with the underlying behavior of the true process. As such,
we do not recommend that higher-order-derivative penalties be
used for PDA parameter estimation in fundamental models.

Instead, we recommend a new iteratively refined PDA algo-
rithm (iPDA) which ensures that spline fits are consistent
with the fundamental process behavior. The iPDA algorithm
Table 1) because more iterations between spline-fitting
arameter estimation are required for the parameter esti

o converge.
In Fig. 7, we can see the effect of the ODE-based pen

n the spline fit for a particular set of nonlinear step-resp
ata. The regular PDA spline fit inFig. 7a contains many fluc

uations. AsλODE increases (Fig. 7b and c), these fluctuatio
re smoothed out, and the spline fit approximates the true o
ore accurately.

. Conclusions and future work

Principal differential analysis can be used for estima
arameters in continuous dynamic models that describe c

cal processes. Standard PDA consists of two steps: (i) fi
-splines (or other basis functions) to dynamic data, and
sing the resulting empirical spline curves and their deriva

o convert the differential equations to algebraic expression
re used for parameter estimation. Several benefits arise
DA is used. Since the resulting parameter estimation p

em is algebraic, repeated numerical simulation of differe
quations is not required, and it is easy to determine anal
acobians for PDA parameter estimation by simply diffe
iating the right-hand side of the model ODE(s). As a re
DA requires considerably less computational effort than t

ional NLS estimation. As well, PDA does not require ini
alues for the dynamic output variables to be either kn
r estimated as additional parameters. Many PDA param
stimation problems may be better behaved than their
ounterparts; parameters (like kinetic rate constants) that a
inearly in differential equations behave nonlinearly in the i
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Fig. 7. Spline approximations using (a) regular PDA, (b) iPDA withλODE = 1.0,
and (c) iPDA withλODE = 10.0. Concentration was measured every 80 s with
a standard deviation of 0.016 kmol m−3 (I = 4.0 min, three coincident knots at
t = 4.0 min).

improves the initial spline fit using a model-based penalty term.
When iPDA was applied to the CSTR model using sparse and
noisy data, the resulting parameter estimates were unbiase
and were much more precise than those obtained using sta

dard PDA. As the size of the model-based penalty coefficient
increased, precision of the parameter estimates approached the
precision obtained from standard NLS estimation; computation
times increased as more iPDA iterations were required for the
parameters to converge.

To date, PDA (and iPDA) has only been used for parame-
ter estimation in simple dynamic models, for which traditional
NLS estimation works well. PDA may have considerable bene-
fits for parameter estimation in larger-scale models, either on its
own, or as a computationally attractive means of obtaining good
initial parameter estimates to be used in traditional NLS estima-
tion. However, before PDA can be used for complex problems,
several issues need to be resolved. The most serious drawback
is that, in their current forms, PDA and iPDA are restricted to
dynamic models in which all of the states are measured (all of the
derivatives that appear in the model need to be converted to alge-
braic expressions). Other issues that need attention are related to
algorithm tuning. Better knowledge is required so that PDA users
can select enough B-spline knots (but not too many) so that good
spline fits can be obtained efficiently, and so that additional knots
can be added automatically in intervals where they are needed
to obtain good spline fits. Users also need to know how to select
appropriate weighting parameters for the model-based penalties
used in iPDA, so that a desirable balance between accuracy of
parameter estimates and computational effort is achieved. Fur-
thermore, it will be helpful to understand the implications of the
p ima-
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eculiar error structure in PDA (and iPDA) parameter est
ion. Residuals for the parameter estimation step of PDA (se
2.11)) are in the differentiated rather than the integrated f
f the model, whereas residuals for the spline-fitting step a

he regular output variables. PDA and iPDA may be well su
or dynamic parameter estimation problems in which diffe
ypes of error arise from a variety of sources. Uncorrelated e
ssociated with measurement noise are consistent with the
als from the spline-fitting step; whereas, correlated errors

o random disturbances that pass through the dynamic pr
re consistent with the residuals that are minimized durin
arameter estimation step (residuals in the differentiated
f the model).

It will be important to generate information about the un
ainty of the parameter estimates that are obtained using i
n the limiting case where the modeler assumes (as when
LS) that the random errors are independent (no corre
rrors due to disturbances), it is appropriate to use a very
alue of the weighting coefficient,λODE, to obtain paramete
stimates that are unbiased and spline fits that closely ap

mate the ODE solution. In this situation, confidence inter
or model parameters obtained using iPDA become iden
o those obtained using NLS (Varziri, 2006). In more complex
ituations, when uncorrelated measurement errors and
ated process disturbances are both present, iPDA users s
elect a smaller value ofλODE that takes into account the re
ive variances of the two types of error. In our current rese
e are developing methods for appropriate selection ofλODE
nd expressions to describe parameter uncertainty for m
esponse ODE parameter estimation problems with both
f random error.
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