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a b s t r a c t

A dynamic mathematical model has been developed to predict the performance of a stirred tank,
solid–liquid two-phase partitioning bioreactor (SL-TPPB) for the treatment of benzene, toluene, ethyl-
benzene and o-xylene (BTEX) contaminated gases. The SL-TPPB system consists of an aqueous phase
containing a bacterial consortium and a solid phase of silicone rubber beads (10%; v/v) with a high affin-
ity for BTEX compounds. The silicone rubber beads serve to sequester and release BTEX according to
thermodynamic equilibrium, which increases mass transfer from the gas phase and reduces aqueous
phase concentrations of these toxic compounds during fluctuating inlet loadings. The model was devel-
oped from mass balances on BTEX components in the gas, aqueous and polymer phases, and biomass
in the aqueous phase. Dynamic experimental data from this system were used to fit model parameters
ioreactor

odeling
acterial Consortium
iodegradation

and to assess the accuracy of the model. A detailed estimability analysis of model parameters and initial
conditions was completed to identify uncertain parameters that are most influential for the model pre-
dictions and to determine the parameters and initial conditions that should be targeted for estimation
using the dynamic data. It was found that the developed model, with estimated parameters and initial
conditions, has the ability to predict experimental off-gas BTEX concentrations with reasonable accuracy,
which are the outputs of greatest importance.
. Introduction

Mathematical models for biodegradation systems used in the
reatment of waste gas streams serve two purposes: (1) to explain
he phenomena that are occurring within the bioreactor to achieve
econtamination of the waste gas stream and (2) to predict the
erformance of the system under various operating conditions.
ecently, models have been developed and validated, with the
bjective of predicting performance under various operating con-
itions, for several novel biotreatment systems of waste gases

ncluding foamed emulsion bioreactors for the treatment of toluene
1], dual liquid-phase biofilters for hydrophobic pollutants [2],
ybrid bioreactors composed of a bubble column bioreactor and
iofilter compartments for the treatment of benzene [3], and mem-

rane bioreactors for the treatment of toluene [4].

A novel biotreatment system that has been shown to be very
romising for the treatment of gases contaminated by benzene,
oluene, ethylbenzene and o-xylene (BTEX) is the stirred tank
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solid–liquid two-phase partitioning bioscrubber (SL-TPPB), which
has been experimentally investigated by Littlejohns and Daugulis
[5]. This system consists of an aqueous phase containing a bac-
terial consortium with the ability to degrade BTEX and a second
nonbioavailable, immiscible and biocompatible phase of silicone
rubber beads to uptake and release BTEX during dynamic opera-
tion. This uptake and release of BTEX by the polymer beads reduces
toxic substrate levels in the aqueous phase during periods of high
loading and increases mass transfer of BTEX out of the gas phase.
Although models for liquid–liquid TPPBs for the treatment of waste
gases, which have an organic solvent sequestering phase, have
been developed and validated [6–9], no models exist for suspended
growth SL-TPPBs, despite several benefits of using polymers as a
sequestering phase over organic solvents [10].

This study discusses the development and application of such
a model to predict outlet gas concentrations in a 3 L stirred tank
solid–liquid TPPB for the treatment of a continuous gas stream
containing BTEX. The model, which describes the experimental
system studied by Littlejohns and Daugulis [5], enables improved

understanding of the phenomena occurring within the system and
predicts performance under various inlet loading fluctuations. Ini-
tial values for model parameters are obtained from independent
experiments, empirical correlations and literature. Estimability
analysis [11–13] was then performed to determine which of these

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:andrew.daugulis@chee.queensu.ca
dx.doi.org/10.1016/j.jhazmat.2009.10.091
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Nomenclature

C substrate concentration (mg L−1)
C* liquid equilibrium concentration (mg L−1)
D diffusion coefficient (m2 s−1)
EP physical enhancement constant
Fg volumetric flow rate (L s−1)
H Henry’s constant (mg L−1 mg−1 L)
Ii2,i interaction parameter for effect of substrate 2 on

initial substrate
K partition coefficient between liquid and polymer

(mg L−1 mg−1 L)
KS half saturation constant (mg L−1)
k mass transfer coefficient (m s−1)
kLa volumetric mass transfer coefficient between gas

and liquid (s−1)
kO overall mass transfer coefficient between liquid and

polymer (m s−1)
kd endogenous respiration coefficient (s−1)
km specific rate of substrate consumption for mainte-

nance (s−1)
LR loading rate (mg s−1)
Pg power input (W)
r rate of substrate depletion (mg L−1 h−1)
R radius (m)
SYr uncertainty in the measured responses
S� uncertainty in the parameters
SR stripping rate (mg s−1)
TX
i

growth substrate transformation capac-
ity = mgN/mgG (mg mg−1)

V volume (L)
X biomass concentration (mg L−1)
Y model output (mg L−1)
Yx/i yield coefficient (mg L−1 mg−1 L)

Greek symbols
ε gas hold-up
�s superficial gas velocity (m s−1)
� density (kg L−1)
�max maximum specific growth rate (s−1)
 proportionality factor

Subscripts
aq sample containing aqueous phase
B benzene
E ethylbenzene
g in gas phase
gl between gas and liquid phases
HS in the headspace of the sample
i species B, T, E or X
in inlet gas stream
INH inhibitory concentration
l in liquid phase
lp between liquid and polymer phases
O2 oxygen
poly sample containing polymer + aqueous phase
p in polymer phase

p
d
w
a

Table 1
List of equations.

Gas-phase balances

dCi,g
dt

= Fg
Ci,in
Vg

− EPkLai(C∗
i,gl

− Ci,l)
Vl
Vg

− Fg
Ci,g
Vg

(1)

Liquid-phase balances

dCi,l
dt

= EPkLai(C∗
i,gl

− Ci,l) − 3kO,i
Rp

(Ci,l − C∗
i,lp

) − ri (2)

dX

dt
= rBYX/B + rT YX/T + rEYX/E − kdX (3)

Polymer-phase balances

dCi,p
dt

= 3kO,i
Rp

(Ci,l − C∗
i,lp

)
Vl
Vp

(4)

Headspace predictions for liquid samples

Ci,aq,HS = Ci,l × Vl,aq
Vg,aq + (Vl,aq/Hi)

(5)

Headspace predictions for liquid and polymer samples

to the polymer beads due to thermodynamic driving forces. Alter-
natively, as the cells metabolize BTEX in the aqueous phase, BTEX
transfers out of the polymer phase to the aqueous phase for subse-
quent degradation.

Table 2
Thermodynamic and kinetic expressions.

Aqueous phase in equilibrium

C∗
i,gl

= Ci,g/Hlg (9)

C∗
i,lp

= Ci,p/Klp (10)

Microbial kinetics

rB = (�max,BCB/((Ks,B + CB) + IT,BCT + IX,BCX ))(1 − (CB,l/CB,INH))X
YX/B

(11)

rT = (�max,T CT /((Ks,T + CT ) + IB,T CT ))(1 − (CT,l/CT,INH))X
YX/T

(12)

rE = (�max,ECE/(Ks,E + CE))(1 − (CE,l/CE,INH))X
(13)
T toluene
X o-xylene
arameter values should be updated using information from the
ynamic experimental data of Littlejohns and Daugulis [5], and
hich parameters should remain at their initial values. Estimability

nalysis is a formal procedure that has been used to aid parame-
Ci,poly,HS = Ci,l × Vl,poly + Ci,p × Vp,poly
(Vl,poly/Hi) + (KiVl,poly/Hi) + Vg,poly

(6)

ter estimation in a variety of chemical [11–17] and biochemical
[18–20] models. It selects parameters for estimation based on infor-
mation about uncertainties in each of the initial parameter values,
sensitivity of model predictions to the various parameters, and the
quantity and quality of the dynamic experimental data. Note that
uncertain initial conditions can be included as model parameters
in the estimability analysis, and are selected for estimation if there
is sufficient information content in the data. Using the estimability
analysis, influential parameters and initial conditions were selected
and were estimated to achieve improved predictions of dynamic
SL-TPPB behaviour.

2. Model development

In the solid–liquid stirred tank TPPB used by Littlejohns and
Daugulis [5], BTEX is delivered into a well-mixed bioreactor via
a continuous gas stream. The gas bubbles are dispersed through-
out the bioreactor due to the agitation, and BTEX is transferred from
the gas phase to the aqueous phase containing the bacterial consor-
tium. If a build-up of BTEX occurs in the aqueous phase, for example,
during feed fluctuations, BTEX partitions from the aqueous phase
YX/E

rX =

⎛
⎝

(
TX
B

(
dCB
dt

(
1
X

)))(
CX

Ks,X + CX

)
X

+
(
TX
T

(
dCT
dt

(
1
X

)))(
CX

Ks,X + CX

)
X

⎞
⎠(

1 − CX,l
CX,INH

)
(14)
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Table 3
Initial parameter values.

Parameter Value Unit S� Method of Determination

EP 2 – 0.2 Littlejohns and Daugulis [26]
kLaB 0.0189 s−1 0.00264 Shown in current study
kLaT 0.0166 s−1 0.00232 Shown in current study
kLaE 0.0155 s−1 0.00216 Shown in current study
kLaX 0.0155 s−1 0.00216 Shown in current study
KB 62 mg L−1 solid L mg−1 aqueous 2.88 Littlejohns and Daugulis [5]
KT 200 mg L−1 solid L mg−1 aqueous 19.5 Littlejohns and Daugulis [5]
KE 414 mg L−1 solid L mg−1 aqueous 153.08 Littlejohns and Daugulis [5]
KX 593 mg L−1 gas L mg−1 aqueous 86.4 Littlejohns and Daugulis [5]
HB 0.26 mg L−1 gas L mg−1 aqueous 0.04 Littlejohns and Daugulis [5]
HT 0.35 mg L−1 gas L mg−1 aqueous 0.02 Littlejohns and Daugulis [5]
HE 0.43 mg L−1 gas L mg−1 aqueous 0.02 Littlejohns and Daugulis [5]
HX 0.25 mg L−1 gas L mg−1 aqueous 0.03 Littlejohns and Daugulis [5]
Ko,B 1.05 × 10−8 m s−1 1.84 × 10−6 Shown in current study
Ko,T 9.3 × 10−9 m s−1 1.63 × 10−6 Shown in current study
Ko,E 8.5 × 10−9 m s−1 1.48 × 10−6 Shown in current study
Ko,X 8.5 × 10−9 m s−1 1.48 × 10−6 Shown in current study
ε 0.09 – 0.02 Calderbank [27]
�max,B 0.00012 s−1 0.0018 Littlejohns and Daugulis [25]
�max,T 0.00017 s−1 0.0023 Littlejohns and Daugulis [25]
�max,E 0.000036 s−1 0.006 Littlejohns and Daugulis [25]
Ks,B 27.57 mg L−1 11.01 Littlejohns and Daugulis [25]
Ks,T 34.12 mg L−1 12.12 Littlejohns and Daugulis [25]
Ks,E 0.36 mg L−1 1.76 Littlejohns and Daugulis [25]
Ks,X 0.1 mg L−1 10 Littlejohns and Daugulis [25]
IT,B 2 – 0.5 Littlejohns and Daugulis [25]
IX,B −0.7 – 0.5 Littlejohns and Daugulis [25]
IB,T −0.4 – 0.5 Littlejohns and Daugulis [25]
IE.B 4 – 0.5 Littlejohns and Daugulis [25]
CB,INH 20 mg L−1 15 Abuhamed et al. [28]
CT,INH 20 mg L−1 15 Abuhamed et al. [28]
CE,INH 35 mg L−1 15 Estimated from Abuhamed et al. [28]
CX,INH 35 mg L−1 15 Estimated from Abuhamed et al. [28]
YX/B 1.35 mg mg−1 0.27 Littlejohns and Daugulis [25]
YX/T 1.25 mg mg−1 0.25 Littlejohns and Daugulis [25]
YX/E 0.85 mg mg−1 0.17 Littlejohns and Daugulis [25]

k

T
E

TB
X 0.5 –

TT
X 0.5 –

kd 2.5 × 10−6 s−1

The model for the SL-TPPB was developed using the following
ey assumptions:

1. The contents of each phase in the reactor (gas, liquid, polymer)
are of uniform BTEX concentration and composition.

2. BTEX is transferred from the gas phase to the aqueous phase,
and from the aqueous phase to the polymer phase [21]. Direct
transfer between the gas phase and the polymer is neglected.

3. The biomass is distributed throughout the liquid and consumes
BTEX only from the aqueous phase.

4. All polymer beads are spherical and are the same size.
5. The diffusion coefficients of BTEX in the polymer are constant.

6. Constant partition coefficients describe equilibrium between

the liquid and polymer phases. Henry’s law describes equilib-
rium between the gas and liquid phases.

7. Concentration gradients develop within the polymer particles
during dynamic operation, in response to dynamic changes in

able 4
xperimental conditions.

Operational conditions Total BTEX loading rate (mg(L−1 h−1))

Nominal 60
Two times nominal 120
Four times nominal 240
Six times nominal 360
Ten times nominal 600

a All BTEX components are present in approximately equal concentrations.
0.1 Littlejohns and Daugulis [25]
0.1 Littlejohns and Daugulis [25]
0.000001 Shown in current study

BTEX concentrations in the aqueous phase. Instead of predict-
ing these gradients and the associated diffusion rates explicitly
using partial differential equations, mass transfer from the par-
ticles can be adequately described using inside-the-particle
mass transfer coefficients that have been developed and used
for other types of reactors that contain polymer particles
[22,23].

8. Substrate toxicity can be described using the model by Luong
[24].

9. Substrate interactions can be described using the model by Lit-
tlejohns and Daugulis [25].

10. Oxygen levels are sufficiently high so that biological reactions

are not oxygen limited.

11. A lumped overall mass transfer coefficient can describe BTEX
mass transfer from the liquid to polymer phases.

12. The resistance to BTEX mass transfer in the gas phase and
microbial cell walls is negligible.

Inlet concentration (mg L−1) of total BTEXa Flow rate (L h−1)

5.36 33.6
10.72 33.6
21.44 33.6
32.16 33.6
53.6 33.6
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Table 5
Ranking and parameter estimates.

Estimability rank Parameter/initial condition Upper/lower bounds Estimated value Units

1 Ks,X 1/0.001 0.005375 mg L−1

2 �max,E 0.00036/3.6 × 10−6 3.641 × 10−6 s−1

3 �max,B 0.0012/1.2 × 10−5 6.103 × 10−5 s−1

4 CE,in,2 0.5/0.01 0.02 mg L−1

5 CE,in,4 0.5/0.01 0.02 mg L−1

6 CE,in,10 0.5/0.01 0.16 mg L−1

7 �max,T 0.0017/1.7 × 10−5 3.209 × 10−5 s−1

8 CE,in,6 0.5/0.01 0.05 mg L−1

9 ko,X 6.5 × 10−10/5.5 × 10−6 1.4 × 10−7 m s−1

10 kLaB 0.00189/0.189 0.0789 s−1

11 kLaT 0.00166/0.166 0.0766 s−1

12 kLaX 0.00155/0.155 0.0355 s−1

13 HT 0.45/0.20 0.22 –
14 CBio,in,4 7000/9000 8500.53 mg L−1

15 CBio,in,6 6000/8000 7451 mg L−1

16 CBio,in,10 7000/9000 7200 mg L−1

17 CBio,in,2 5000/7000 6568.53 mg L−1

18 IT,B – – –
19 CE,INH – – mg L−1
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caulking which was dried to spherical beads of density 1.15 g L
and diameter 2.2 mm. BTEX compounds were used during the
determination of Dp,B, Dp,T, Dp,E and Dp,X as described in Section
3.1.1.4.1. These diffusivities were used in the determination of
overall mass transfer coefficients for BTEX between aqueous and
20 IE,B

3. Mass transfer of BTEX to/from the headspace to/from the liquid
is negligible.

4. Physical enhancement of mass transfer due to the presence of
solids, EP, is identical for each BTEX component, and is the same
as that for oxygen estimated by Littlejohns and Daugulis [26].

5. Temperature and pH are constant.

Table 1 contains the set of equations used to model the system.
ass balances on BTEX components in each phase were used to

evelop ordinary differential equations to describe BTEX concen-
rations in the gaseous, liquid and polymer phase, which are listed
n Table 1 as Eqs. (1), (2) and (4), respectively. The outlet gas BTEX
oncentrations determine the performance of the SL-TPPB (as the
bjective of the system is the treatment of contaminated gases)
nd were the primary interest in the current study. The concen-
ration of biomass in the aqueous phase is represented in Table 1
y Eq. (3). A term for o-xylene contributing to biomass growth is
ot present in Eq. (3) due to previous research showing that o-
ylene is cometabolized by the bacterial consortium [25]. During
he dynamic experiments, aqueous samples and aqueous + polymer
amples were removed from the reactor and were allowed to reach
hase equilibrium, to provide information about BTEX concentra-
ions in the aqueous and polymer phases [5]. Eqs. (5) and (6) are
ncluded in the model so that these headspace measurements can
e used to obtain information about the model parameters.

Table 2 contains thermodynamic and kinetic expressions that
ere substituted into the primary equations listed in Table 1. The

hermodynamic expressions that are used to determine concentra-
ions in the aqueous phase in equilibrium with the gas phase and
he polymer phase are listed as Eqs. (9) and (10), respectively, in
able 2. Kinetic expressions that were developed previously [25] in
ombination with the model by Luong [24] to account for substrate
oxicity are shown in Table 2 as Eqs. (11)–(14) for benzene, toluene,
thylbenzene and o-xylene, respectively.

. Materials and methods
.1. Parameter values

Parameter values were obtained from independent experi-
ents, empirical correlations, and/or literature values, and are

isted in Table 3. The following section outlines how the parameters
– –

listed as “Shown in current study” were obtained from experiments
and correlations.

3.1.1. Experiments for parameter values
The experiments that were performed in this study allowed for

the determination of diffusivity of BTEX components into the poly-
mer (Dp,B, Dp,T, Dp,E, and Dp,X) and the specific rate of consumption
for maintenance (km) and were used in correlations to obtain model
parameter values.

3.1.1.1. Materials. Benzene and toluene were obtained from
Sigma–Aldrich (Oakville, Canada) and ethylbenzene and o-xylene
were obtained from Fisher Scientific (Nepean, Canada). Silicone
rubber, primarily composed of polydimethylsiloxane, was obtained
from GE (Huntersville, NC) in the form of 100% silicone rubber

−1
Fig. 1. Objective function for increasing number of parameters and initial conditions
estimated.
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Fig. 2. Predicted and experimental benzene concentra

olymer phases (ko,B, ko,T, ko,E, ko,X) as described in Section 3.1.2.2.
TEX compounds and silicone rubber beads were used in the deter-
ination of km, as described in Section 3.1.1.4.2, which was used in

he determination of the endogenous respiration coefficient (kd) as
escribed in Section 3.1.2.4.

.1.1.2. Microorganisms. The bacterial consortium was enriched
rom petroleum-contaminated soil as previously described in
ittlejohns and Daugulis [25]. A denaturing gradient gel elec-
rophoresis performed by Microbial Insights (Rockford, TN)
evealed the consortium used in this study consists of seven dif-
erent species of Pseudomonas. These microorganisms were used
uring the determination of km, as described in Section 3.1.1.4.2,
hich was used in the determination of kd, as described in Section

.1.2.4.

.1.1.3. Equipment. To determine km, as described in Section

.1.1.4.2, the bioreactor used was a NewBrunswick Bioflo III with
3 l working volume of aqueous media of identical composi-

ion to that used in Littlejohns and Daugulis [5]. Air was diffused
hrough flasks containing BTEX components, which were combined

ith makeup air to create a gaseous stream containing BTEX. The

ioreactor was operated at identical conditions to the TPPB being
odeled in the current study, and was therefore automatically
aintained at a temperature of 30 ◦C, a pH of 6.9 and agitated at

00 rpm.
in gas streams over a range of step change conditions.

3.1.1.4. Experimental procedure.
3.1.1.4.1. Diffusion coefficients of BTEX in silicone rubber, Dp,B, Dp,T,

Dp,E, Dp,X. The diffusion coefficients for BTEX species in silicone
rubber were determined experimentally by adding 3 g silicone rub-
ber into a sealed 125 ml amber bottle filled to the top with aqueous
medium. 5 �l of each BTEX component was injected into the aque-
ous medium, and the amber bottle was maintained at 30 ◦C and
agitated at 180 rpm. Periodic 1 ml measurements of the aqueous
phase were taken using a gas-tight syringe, through self-sealing
septa at the top of the bottle, which were injected into 2 ml gas
tight containers. These containers were left to equilibrate for 1 h,
at which time the gas phase concentrations in the 2 ml containers
were measured using GC/FID. The method for GC/FID is explained
elsewhere [25]. The concentration of BTEX absorbed into the poly-
mer at the time the sample was taken from the amber bottle was
then calculated using Henry’s constants. Diffusion coefficients were
then determined using the method described by Amsden et al. [10],
and were used in Section 3.1.2.2, in order to determine ko,B, ko,T, ko,E,
and ko,X.

3.1.1.4.2. Specific rate of consumption for maintenance, km. To
determine km, BTEX was delivered to the single-phase bioscrub-

ber via a continuous gas stream containing BTEX at a loading of
60 mg L−1 h−1 with approximately equal amounts of each com-
pound until the system reached steady-state (>200 h). Gas samples
of the inlet and outlet gas streams, along with biomass samples
were taken approximately every 12 h. Gas samples were analyzed
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Fig. 3. Predicted and experimental toluene concentra

sing GC/FID and biomass concentrations were analyzed using
ptical density measurements using methods described elsewhere
25]. Once the system had reached steady state, Eq. (15) was applied
29]:

m = LR− SR
X · Vl

(15)

here LR and SR are the loading and stripping rates in mg s−1,
espectively, as defined in the nomenclature section. This value was
sed in Section 3.1.2.4, to determine kd.

.1.2. Correlations for parameter values
The correlations used in this study utilized experimental val-

es determined in the current study, along with literature values,
nd allowed for the determination of volumetric mass transfer
oefficients for BTEX (kLaB, kLaT, kLaE, kLaX), overall mass transfer
oefficients for BTEX between aqueous and polymer phases (ko,B,
o,T, ko,E, ko,X), entrained gas volume (ε) and the endogenous respi-
ation coefficient (kd).

.1.2.1. Volumetric mass transfer coefficients, kLaB, kLaT, kLaE, kLaX.

he experimental methodology used for determining physical
nhancement coefficients and volumetric oxygen mass transfer
oefficients in a stirred tank reactor are described in Littlejohns and
augulis [26]. These volumetric oxygen mass transfer coefficients
ere used to determine volumetric BTEX mass transfer coefficients
n gas streams over a range of step change conditions.

using the correlation shown in Eq. (16) [30]:

kLai =  · kLaO2 (16)

The parameter  was estimated using Eq. (17) [31]:

 = Di
DO2

(17)

Diffusion coefficients used in Eq. (14) for oxygen and BTEX in
water at 30 ◦C are 3.51 × 10−5, 1.17 × 10−5, 1.03 × 10−5, 9.33 × 10−6

and 9.33 × 10−6 cm2 s−1, respectively [32].

3.1.2.2. Overall mass transfer coefficients for BTEX between aqueous
and polymer phases, ko,B, ko,T, ko,E, ko,X. The overall mass transfer
coefficient for BTEX between aqueous and polymer phases must
consider both aqueous and polymer resistances to mass transfer.
The overall mass transfer coefficient was calculated using Eq. (18)
[22]:

1
kO,i

= 1
Kikp,i

+ 1
kl,i

(18)

In order to determine mass transfer coefficients on the liquid

and polymer sides, semi-empirical equations can be used which
are shown as Eq. (19) [22] and Eq. (20), respectively [23]:

kl,i =
Di,l
Rp

(19)
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p,i =
Di,p�

2

2Rp
(20)

.1.2.3. Entrained gas volume, ε. Gas holdup in the reactor was esti-
ated using the correlation seen in Eq. (21) [27], which was used

o determine the entrained gas volume in the system:

= 1.8 ∗ Pm0.14�0.5
s (21)

here Pm = Pg/�Vl and ε= Vg/Vg + Vl.

.1.2.4. Endogenous respiration coefficient, kd. The maintenance
equirements for the system were modeled using the specific
ndogenous respiration coefficient, as it provides more realistic
redictions compared to the specific rate of substrate consumption
or maintenance [33]. However, both approaches account for the
ame macroscopic observation and are related by Eq. (22), which
as used to determine the parameter value of kd

d = YX/ikm (22)

.2. Modeling
.2.1. Solid–liquid TPPB data
The experimental data for pseudo steady-state and dynamic

peration of the solid–liquid TPPB that are modeled in the cur-
ent study was obtained previously as described in Littlejohns and
augulis [5]. The experimental data for the dynamic conditions
s in gas streams over a range of step change conditions.

modeled were obtained after operation of the SL-TPPB until pseudo
steady-state biomass concentrations were reached (>200 h). The
approximate operating conditions that were used to obtain the
modeled experimental data are listed in Table 4 for step changes
of 2, 4, 6 and 10 times nominal BTEX loadings. The data being
modeled consist of operation at a nominal BTEX loading dur-
ing pseudo-steady state for approximately 30 min, followed by a
dynamic loading step change for approximately 230 min, followed
by a return to nominal loading for approximately 150 min. Inlet
concentrations fluctuated considerably during data collection due
to minor increases or decreases in the rotameter settings.

3.2.2. Numerical methods
MatlabTM was used to generate model predictions by numerical

integration of the differential Eqs. (1), (2) and (4) for each BTEX com-
pound and Eq. (3) for biomass, using the solver ode23s. The period
of operation that was modeled includes steady-state operation at
nominal loading, followed by a dynamic step change, followed by a
return to nominal loading at conditions described in Section 3.2.1.
The model was solved for step changes of 2, 4, 6 and 10 times
the nominal loading. The initial conditions for each equation that

were input into the ODE solver were determined by experimental
measurements at steady-state operation prior to each step change.
However, as there is experimental error present in the measured
initial condition values, these initial conditions were also treated as
parameters during estimability analysis and parameter estimation.
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Fig. 5. Predicted and experimental xylene concentrat

As stated previously, inlet concentrations fluctuated during
xperimental operation due to minor increases or decreases in the
otameters. Therefore, to model these fluctuations, BTEX inlet con-
entration used in the model were approximated using measured
xperimental data and by interpolating between the each sequen-
ial inlet sample concentration to model periods between samples.
s little experimental data exist beyond t = 150 min for the step
hange to 10 times the nominal loading, predictions beyond this
oint were not determined and used for parameter estimation.

Parameter and initial condition estimates, as described in the
ollowing section, were determined by finding the parameter val-
es that minimize the objective function which was the weighted
um of squared errors between the model predictions and the
xperimental measurements for BTEX concentrations in the out-
et gas, headspace in the aqueous phase samples, headspace in
he aqueous + polymer phase samples, and biomass concentrations
sing the “lsqnonlin” MatlabTM routine.

.2.3. Estimability analysis and parameter estimation
An estimability analysis of the 43 parameters in the model

nd 52 initial condition inputs was completed to determine which
arameters and initial conditions had the largest impact on model

redictions. This analysis was followed by estimation of the
ost important parameters (and initial conditions) within real-

stic upper and lower bounds to obtain more precise values than
rovided by the initial parameter values and experimental mea-
urements of initial conditions, and to improve the accuracy of the
n gas streams over a range of step change conditions.

model predictions. The estimability analysis ranked the parame-
ters and initial conditions according to their influence on model
outputs, their correlation with other model parameters and uncer-
tainty in initial values, using the method described by Thompson
et al. [13]. During the estimability analysis, the sensitivity coeffi-
cients were scaled using uncertainties S� in the initial parameter
values and SYr in the measured responses [13,15]. The scaling fac-
tors S� in Table 3 provided information to the estimability algorithm
concerning how precisely the initial parameter values could be
estimated from the independent data (e.g. from the experiments
described in Section 3.1.1.4). Using this information, the estima-
bility algorithm selected parameters with large uncertainty and
large influence for re-estimation using the dynamic SL-TPPB data.
Parameters that could be determined precisely from the prelim-
inary experiments or that had little influence on the predictions
of the dynamic data were not re-estimated, but were kept at their
initial values shown in Table 3.

The estimability analysis resulted in a list of parameters ranked
from most estimable to least estimable. Parameters and initial con-
ditions that were ranked highest on the list are those that are most
estimable from the available data, because these parameters have
large initial uncertainties, large influences on model predictions

and have little correlation with the effects of other parameters that
rank higher on the list. These high ranking parameters and initial
conditions were, therefore, the targets for estimation using experi-
mental data from the SL-TPPB runs. The parameter values in Table 3
and measured initial conditions were used as the initial guesses
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Fig. 6. Predicted and experimental biomass co

or estimation, and the model predictions were fit to the experi-
ental data by minimizing an objective function that consisted of

he sum of squared errors weighted by uncertainties in the differ-
nt types of experimental measurements. Upper and lower bounds
see Table 5) on the estimated parameters and initial conditions
ere enforced during the parameter estimation to ensure that all

stimated values remained physically realistic. A series of param-
ter estimation calculations were performed, beginning with the
ost estimable parameter, (Ks,X, by itself) followed by the two most

stimable parameters (Ks,X, and �max,E) then the three and so on.
arameter estimation stopped when including additional parame-
ers did not cause a noticeable decrease in the objective function
or parameter estimation.

. Results and discussion

.1. Estimability analysis and parameter estimation

The parameters and initial conditions that were identified to
ave the largest impact on model output were identified by the
stimability analysis and are ranked in Table 5. From the informa-
ion provided by experimental step change SL-TPPB runs, it was
etermined that at least 20 parameters or initial conditions could

e estimated. It can be seen that the most influential parameters
re those that govern the rate of biological degradation, which
ight be expected, as biological uptake is the only true sink for

TEX components in the system and its rate can govern the driving
orce between phases. Ks,X was found to have the largest impact
ations over a range of step change conditions.

on model predictions, possibly partially due to the relatively large
uncertainty associated with the original value of the parameter. The
initial conditions for ethylbenzene concentration in the gas phase
are also shown to be influential to the model predictions. This could
be due to the fact that ethylbenzene has a relatively large interac-
tion with benzene degradation (see IE,B in Table 3) and all other
species interact with benzene. Other model parameters and initial
conditions that are highly estimable include gas–liquid mass trans-
fer coefficients and initial biomass concentrations. Gas–liquid mass
transfer is relatively rapid in comparison to other system dynamics,
which accounts for these parameters being highly ranked. Biomass
concentrations are slow to respond to step changes, which explains
why initial conditions of biomass concentration would be influen-
tial to the model predictions.

In order to determine the optimal number of parameters and
initial conditions to estimate, the estimation routine was repeated
using an increasing number of parameters and initial conditions
in the order of rank shown in Table 5. The weighted sum of
squared errors between the experimental data and model predic-
tions as a function of the number of parameters estimated can
be seen plotted in Fig. 1. This figure shows that after estimating
the top 17 parameters and initial conditions, model predictions
do not improve noticeably. Therefore, 17 parameters and initial

conditions were estimated, whose values can be seen in Table 5.
One of the important observations is that the maximum specific
growth rates that were estimated are an order of magnitude lower
than the original values. This may be possibly attributed to a
change in the population distribution and kinetics of the micro-
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ial consortium from the time these kinetic values were initially
etermined [25] until the experimental step changes were per-
ormed [5], as it is known that microbial consortia populations can
hange during the length of time of biodegradation experiments
34]. Also, biological activity from short shake flask experiments

ay not reflect biological activity during lengthy bioreactor
uns.

.2. Model predictions

The model predictions for the outlet gas concentration were of
rimary interest in this study, as reduction of outlet BTEX concen-
rations is the objective of the treatment system. Figs. 2–5 show the
nlet concentrations (inputs into the model) and the experimen-
al and predicted outlet gas concentrations for benzene, toluene,
thylbenzene and o-xylene, respectively, for nominal loadings at
teady state, followed by 4-h step changes of 2X, 4X, 6X and 10X the
ominal loadings, with a subsequent return to nominal loadings. It
an be seen that the model predictions are successful in accurately
redicting the off-gas behavior during these dynamic periods for
ll compounds. However, for benzene and toluene during the 4X
tep change, the off-gas concentration was slightly over-predicted.
n addition, for benzene, toluene and ethylbenzene during the 6X
tep change, the model predicts that the system returns to nominal
ff-gas concentrations upon completion of the step change slightly
aster than the experimental data. Overall, the model has the ability
o predict that substrate toxicity occurs during the 10X step change,
s outlet concentrations increase significantly, however, xylene
oncentrations in the outlet gas were slightly over-predicted.

The predictions and experimental data for biomass concentra-
ions over all step changes are shown in Fig. 6. It can be seen
hat the biomass concentrations are accurately predicted for step
hanges of 2X and 4X. For the 6X step change, biomass is slightly
ver-predicted, particularly near the end of the step change. Possi-
ly this may account for the under-predicting of benzene, toluene
nd ethylbenzene gas concentrations after the completion of the
X step change, as seen in Figs. 2–4, respectively. The biomass
oncentration was under-predicted during the 10X run, as the
iomass was predicted to decline during the step change, how-
ver, as the technique used to measure biomass concentrations
oes not distinguish between viable and non-viable cells, the
xperimental biomass concentrations appeared to stay relatively
onstant.

The developed model has been shown to predict dynamic exper-
mental data that range from the system completely damping out
tep change loading fluctuations to the system succumbing to sub-
trate toxicity, with reasonable accuracy. It should be noted that
iofilm formation would change the model structure and predic-
ions significantly. However, it has been shown by Amsden et
l. [10] that biofilm formation does not occur on polymers in a
echanically agitated TPPB, and was therefore not included in the
odel in the current study. Future work in this area should be

ocused on validating this model under varying inlet flow rates and
olymer volume fractions. In addition, the use of this model to pre-
ict system performance under various polymer volume fractions
r mixing conditions could allow for identification of favourable
perating regions. This well-mixed model provides a framework
nd select parameter estimates for models of more complex SL-
PPBs that cannot be assumed to be well-mixed, such as airlift
eactors.
. Conclusions

A mechanistic model of a stirred tank SL-TPPB for the treatment
f gaseous BTEX has been presented with the primary objective of

[

[
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predicting outlet gas concentrations. Experimental data obtained
from operation of this system over dynamic step change condi-
tions was used to estimate parameters and assess model accuracy.
As estimability analysis of the model parameters and initial con-
ditions allowed for the identification of those values that have the
most significant impact on model output, which were found to be
those that influenced biological activity. After the estimation of the
identified model parameters and initial conditions, the model was
able to predict dynamic experimental data with reasonable accu-
racy. The model is capable of predicting a range of responses from
the SL-TPPB including completely damping out inlet fluctuations
during smaller inlet loading step changes, to the system succumb-
ing to toxic aqueous concentrations during larger inlet loading step
changes.
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