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Abstract A data smoothing method is described where the roughness penalty de-
pends on a parameter that must be estimated from the data. Three levels of parameters
are involved in this situation: Local parameters are the coefficients of the basis function
expansion defining the smooth, global parameters define low-dimensional trend and
the roughness penalty, and a complexity parameter controls the amount of roughness
in the smooth. By defining local parameters as regularized functions of global param-
eters, and global parameters in turn as functions of complexity parameter, we define
a parameter cascade, and show that the accompanying multi-criterion optimization
problem leads to good estimates of all levels of parameters and their precisions. The
approach is illustrated with real and simulated data, and this application is a prototype
for a wide range of problems involving nuisance or local parameters.

Keywords Generalized cross-validation - Generalized profiled estimation -
Nuisance parameters - Structural parameters - Markov Chain Monte Carlo

1 Introduction: Local, global and complexity parameters

Here is a line of enquiry that leads to an interesting question. In Green and Silverman
(1994), Ramsay and Silverman (2002, 2005) and most situations requiring the flexible
estimation of a functional parameter, we use basis function expansions of the form
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K
xX(1) = D exp(t) = (1), M
k

Our own preference has been to use at least as many basis functions K as data values
(ti, yi),i = 1,...,n, so that, in principle, any amount of variation in the data can
be captured by the expansion. For example, ¢ (¢) is often a B-spline basis function
defined by placing knots at each observed argument value ¢;, j =1, ..., n.

Of course, using so many basis functions would lead to over-fitting of the data,
unless we rely on roughness penalties of the form

P(x) = k/[Lx(t)]zdt

where L in our work has been a linear differential operator of order m of the form

m—1

Lx(t) = D Bj()D/x(t) + D"x(t).

J=0

That is, we minimize

J(elg ) = Dl = x(t)P 2 [ 1L P ds
J

=D [yj — ) + ¢ROe. )

J

where

R(L) = A / Lé()Lo(t) dt. 3)

While most analyses employ simple differential operators of the form Lx = D™x,
we have found many good reasons to work with more sophisticated operators, and the
final chapters of Ramsay and Silverman (2005) are devoted to treating the operator L
as an object to be estimated from the data.

Figure 1 shows the incidence melanoma in the state of Connecticut over the 37
years beginning in 1937. We see sinusoidal and linear trends superimposed, and if we
define

Lax(t) = 2P D*x(t) + D*x (1), )
then any trend of the form
x0(t) = w1 + wat + w3 sin(ePr) + w4 cos(ePr) (5)

in x(¢) is set to 0 as A — oo, and the fit to the data tends to xq(¢), which is a solution of
the differential equation L4x(#) = 0. We need to estimate from the data the constant
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Fig. 1 The circles are the number of Age-adjusted incidences of melanoma per 10° from 1936 to 1972.
The dotted curve is the solution of the linear differential equation D% = —¢2# D%x when B = —0.445.
The solid curve, almost covering the dotted curve, is the fitted curve estimated by penalized smoothing with
the penalty term defined by (4), when 8 = —0.445 and the smoothing parameter 1 = 2.4 % 104

B = In(2w/P), where P is the period of the sunspot cycle that causes the harmonic

behavior in melanoma incidence. Figure 1 also shows the fits to the data defined by

minimizing (2) with A estimated by the profiling process described in Section 2.
Alternatively, we might also consider the semi-parametric model

J(lB.2) =D Iy —ao —art —x(t))] + x/[sz(mzdr, ©)
J

where the order two differential operator in the penalty term is
Lox(t) = e* x(t) + D*x(1). @)

As A — o0, the fit to the data tends to oy + 11 + x1 (), where
x1(¢) = w3 sin(e’t) + w4 cos(e’'t) (8)

is a solution of the differential equation L;x(f) = 0. Both models have the capac-
ity to model tilted sinusoidal trend plus extra variation, but this models requires less
differentiability in the solution x (#) and introduces two additional parameters.

This approach of using “designer” penalty terms might seem a little more sophis-
ticated than many functional data analyses require. Why did we adopt it? First of
all, we and others have found that the “saturated basis plus roughness penalty” strat-
egy produces better estimates of functions and their derivatives than commonly used
alternatives, such as kernel and local polynomial smoothing, and certainly far better
estimates than simple least squares fitting of a small and fixed number of basis func-
tions. This is not to say that a simpler approach won’t often do the job; but when we
needed to push the data as far as possible, we have not found anything better.
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Secondly, we discovered that choosing a roughness penalty that is estimated from
the data opened up powerful new techniques and new opportunities for statistical
approaches to data analysis. By smart choices of roughness penalties, we found that
we could get better estimates of functional parameters and their derivatives. Moreover,
since a linear differential operator is just another format for an linear ordinary differ-
ential equation, we saw this as a way to model data with differential equations. Our
recent work Ramsay et al. (2007) has extended the material in our books to systems
of nonlinear differential equations and we are now working on methods for partial
differential equations.

Now here’s the question. What sort of parameters are these coefficients ¢y that
define the basis function expansion (1)?

Their number K does not seem to be fixed since the more data that we collect,
the larger K will be. Consequently, it seems inappropriate to use classical estimation
theory that relies on the sample size becoming arbitrarily larger than the number of
parameters. Moreover, the role of these coefficients depends on other incidental or
design properties of the data, such as the spacing of the #;’s, the range of ¢-values over
which the data are observed, and so forth. This can make comparing results obtained
from different samples, different investigators and different laboratories difficult.

These coefficients are nuisance or incidental parameters, as opposed to structural
parameters, terms that were proposed in Neyman and Scott (1948). In fact, the coeffi-
cients ¢ are data-proxies in the sense that, if a saturated B-spline basis is used, then
each coefficient represents the typical size of the observations y; over the bounded
interval over which the kth basis function is nonnegative. The situation with respect to a
Fourier basis is similar, except that the local data property is expressed in the frequency
domain. It seems descriptive to also use the term local parameters for parameters of
this nature.

Structural parameters, on the other hand, are typically fixed in number no matter
how much data are collected and, moreover, changing any of their values has an impact
on almost all of the fit x(¢). Parameter 8 in (2) and parameters («g, o1, y) in (6) are
in this class, and we may prefer the term global parameters for these.

To bring this discussion into sharper focus, consider using an order 6 B-spline basis
system for model (2) defined by placing knots at each of the sampling points 7;, which
defines n 4+ 4 = 41 basis functions in vector ¢(¢). Define the n by n 4+ 4 matrix ® as
containing the values of the basis functions at the times #;. Then the coefficient vector
¢ minimizing the criterion J(¢|B8, A) is

&(B. 1) =[®®+R(B, V)] '@y )

where

R(B, 1) = / Li() Lag(0)' dt. (10)

This conditional minimization defines the local or nuisance parameters as a vector-
valued function of the global or structural parameters, and consequently reduces the
dimensionality of the parameter space down to the number of structural parameters,
in this case one. In this process, the local parameters lose their status as independent
parameters. This process of defining a subset of the parameters as functions of other
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parameters is known as profiling. The profile method has been investigated by many
authors, see Severini and Wong (1992), Severini and Staniswalis (1994), Murphy and
van der Vaart (2000) and their references. Recently, Keilegom and Carroll (2006)
studied the asymptotic distribution of the profile estimate. However, Hung and Wong
(1999) gave one example that the profile estimate “can be misleading in both precision
(degree of freedom) and location (bias) especially in small-sample problems” if the
criteria were same in all three levels, since the profile likelihood is not a true likelihood
function.

Similarly, we can use an order 4 B-spline basis system with knots at sampling points
for model (6) and drop the initial and final basis functions, so that there are 37 local
parameters and 3 global parameters.

We now estimate § in (2) by optimizing the un-penalized criterion

H(BIL) = Z[y, — @tj, BN = Z[y/ — &8, 1P
—y[l—A(ﬁm [I—A(ﬁlf\)]y (11)

where the n x n smoothing matrix A(B|1) = ®[®'® + R(B|1)]~'®’. We drop the
roughness penalty here because the fitting function is already smoothed by virtue
of minimizing J(¢|B, A), and so does not need regularizing twice. This procedure
departs from the more usual joint estimation strategy in which the penalized least
squares criterion J (¢, B|A) is minimized with respect to both ¢ and f. Our earlier
experience with this approach, reported in Heckman and Ramsay (2000), gave unsat-
isfactory estimates of both ¢ and 8. By minimizing the un-penalized criterion H (8|2),
we obtain the estimate /3 for any value of A, so ﬂ is an implicit function of A.

There is, finally, the question of the status of A. While it would appear to be a
global or structural parameter, in fact it is not a part of the model in the sense that we
attach no interpretive significance to its value. Instead, it’s role is to control the overall
complexity of the fit x(¢), and we might refer to it as a complexity parameter.

Smoothing parameter A is often selected by minimizing the generalized cross-val-
idated criterion, which can be expressed as

. R SSE(B(A), 1)
F(B), ) = GCV(B(M), A) = n—— 272 (12)
[dfe(B(1), 1)]?

where degrees of freedom measure dfe(X) is
dfe(A) = n — trace[A(L)]
and where the notatiAon F (,@(k), Aly) reminds us that F should be considered as a
function of A, since $ is an implicit function of A.
The criterion GCV is an error sum of squares discounted for the degrees of free-

dom invested in the model, and allows us to choose the A value by optimizing a
fit measure that is relatively insensitive to complexity. Efron (2004) and Gu (2002)
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review the large literature on discounted fit measures and propose some interesting new
approaches.

2 Parameter cascades and profiled parameter estimation

We have a distinct hierarchy in these three classes of parameters that one might refer
to as a parameter cascade. At the bottom are the large number of local parameters in ¢,
and these are defined here as functions ¢(8, 1) of the global and complexity parameters
through the estimate (9) and its analogue for model (6). Even if an explicit solution
for ¢ were not possible, we can still define this function implicitly by optimizing a
penalized or regularized fitting function like J (c|8, 1) each time we change the value
of a global parameter. When the functional relationship is implicit in this way, and the
regularity conditions hold that are required to ensure that the optimization problem
has a unique solution, the Implicit Function Theorem permits the explicit gradient and
Hessian calculations that are essential for fast optimization.

The distinctive aspect of the parameter cascade as described in this paper is that a
different criterion is optimized for each of the three levels of the cascade. That is, we
solve a three-criterion optimization problem, where the criteria are J (c|8, A), H(B|X)
and F () for the local, global and complexity parameters, respectively.

The process that we have outlined is a generalization of the technique of profiling
that is often used in nonlinear least squares and other fitting situations. When used
as a computational trick, profiling defines a subset of parameters that are easily esti-
mated as a function of the remaining parameters for which no simple closed form
estimate is possible. This can often speed up computation, but does not affect the final
estimated parameter values since the same fitting criterion is used at all stages of the
cascade. That is, the essential difference between joint estimation and our approach
is in the use of different fitting criteria at each level. In fact, the joint estimation of
A, B and ¢ through optimizing J(¢|S, A) would lead to a reduction of the criterion to
zero and the fitting of the data by an interpolating spline, and the strategy of choos-
ing A to minimize F'(A) used in many smoothing spline applications works precisely
because F(A) and J(c|B, 1) are not the same criteria, the former assessing mean
squared error in the parameter estimates, and the latter assessing roughness penalized
data fit.

We now abstract this process so as to be able to apply it more widely. Let ¢ be a vec-
tor of local or nuisance parameters, let 8 be a vector of global or structural parameters,
and let @ be a vector of complexity parameters.

Let J(c|B, 0) be an inner criterion. It will typically be based on an error sum of
squares, log likelihood, posterior density or any suitable measure of the quality of the
fit to the data plus a regularization or smoothing term that defines smoothness in terms
of ¢, and it will also depend on complexity parameter # and possibly also on one or
more of the global parameters in 8. The nuisance parameter vector ¢ is removed from
the parameter space by defining the inner optimization conditional on 8 and 6.

Let H(c(B), B|0) be a middle criterion that defines fit to the data conditional on 6,
and this may also be regularized, but the regularization term will define smoothness
as a function of B rather than as a function of c.
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Let F (B (8), 0) be an outer criterion, that can be based on generalized cross valida-
tion, or any suitable measure of the model complexity. The profiling process requires
that the middle criterion H is optimized with respect to 8 each time 6 is changed, so
that the estimating function ﬁ(G) is defined implicitly by this profiling strategy, and,
if we are lucky, explicitly as well, but this is not essential.

As a consequence of these conditional optimizations, the nuisance parameter vec-
tor ¢ is removed from the parameter space as an independent parameter by defining it
through the inner optimization as a function of 8 and . In the same way, the structural
parameter vector B is removed from the parameter space through the middle optimi-
zation as a function of #. Our final parameter estimates become the functional cascade
é[ﬁ (é)], [3(9) and 0 defined by the optimizations with respect to criteria J, H and F,
respectively.

The optimization of F (ﬁ (#), 0) becomes faster and more stable if we have the
gradient

dF(B6).0) 9F(B0).0) n IF(B(6).0) 3B
de N 00 9B 00’

(13)

where d F (3(0), 0)/d#@ is the total derivative of F with respect to 6. Notice that the
formula of d F (ﬁ (6), 0)/d0 involves the term 0 ﬁ /080. If the middle optimization leads
to an explicit solution for f} (0), the gradient is readily available. But if not, the Implicit
Function Theorem can be applied to find 0 ,8 /96. Since the optimal local parameter
vector /3 satisfies dH(B|0)/0B8 = 0, and ,B is a function of @ and y, we can take the
0-derivative on 8H(,3|0)/3ﬂ|ﬂ = 0 as follows:

B
Bﬁ

2 2
i(aH(ﬁlé’) ): OTHBIO)| 9 —0, (14)
do B

ap B0 B+ Y E

which holds since 0 H(f]6)/08| ﬂ is a function of @ that is identically 0. Assuming
that |9*

~ 2 -1 2
B _ [a H(B|0) } [a H(B|0) ] (15)
B B

26 YE B0

Further results when F is the GCV criterion (12) are provided in the Appendix.

3 Interval estimation for nuisance, structural and complexity parameters
In this section, we derive the variances for nuisance, global and complexity parameters

by modifying the Delta method. By treating global parameters as functions of complex-
ity parameters, the variances of global parameters also include the variation inherited
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from the complexity parameters. Let X denote the variance—covariance matrix for y,

which can be estimated in the smoothing context by:

SSE(9) I

3= -
dfe(d)

(16)

The estimated complexity parameter vector 9 satisfies 9 F (ﬁ(G), 0,y)/00 = 0. By

taking the y-derivative of 8F(;§ 0,y),0,y)/00 |9 y = 0, we obtain:

d(dF )_sz‘ L& do
dy\ db |g y ~ dedy oy 462 d.ydy o
where
A A A 2 A
2F  92F  _92F op (9B o2Fop [oF\ 928
—=—+2———+| =) S5-+|=) =
de a6 dBoe 00 0 ) 55~ 90 ap ) a6
and

~ ~ A A 2 ~
d’F  9PF  9F op  9°F 9B 9>F 0P 0B (aF) 0B

= - - -
dody 903y  3Bay 30 303 dy 332 dy 00 B

Equations (17) holds since d F /90| ) y is a function of y that is identically 0.

Solving Eq.(17), we get the first derivative of 9 with respect to y:

| [l
0y dody gyl

Letting u = E(y) and using its first order Taylor expansion, we have that

o [d2F
dy [ d6?

. . dé
0(y) ~0(p) + d—(y — 0.
n

Consequently, the variance of @(y) can be estimated by

. do a0 [dé e
wion- [ (2] -[£]:4].

Approximation (22) makes sense since

dé dé
El—)~El—),
du dy
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when d26 /d? p are bounded by a fixed number, which can be derived by taking expec-
tation on both sides of the first order Taylor expansion for d@ /dy:

d@wd9+d29( ) 04
dy du dzuy w-

Similarly, the sampling variance of B(é (y), y) is estimated by

- dBl_TdB7
var[B@(y),y)] ~ 28 X 28 , (25)
dy dy
where R o ~
d apde o
b _38d6 | 0P 26)
dy 90 dy 9y
The sampling variance of é([B (é m,y), é(y), y) is estimated by
A A de de7’
var[¢(BOY).y), 0. DI~ |- |Z| -] . (27)
dy| Ldy
where R ~
dc . acdo odcdp o¢ (28)

—=——+—=-——+—.
dy 99dy oapdy Oy
If we do not consider the functional relationship between [9 and 6, the sampling vari-

ance of B(é (y)) will then be underestimated by replacing the full derivative of [9 with
respect to y by the partial derivative of 8 with respect to y:

- ap B
var[Bl0,y] ~ [a—ﬂz[g] ) (29)

We call Var[ﬁ |9, y] the conditional sampling variance for /§, because it ignores the
uncertainty resulting from the estimate 6. Similarly, the conditional sampling variance

for € is ,
A A ¢ ¢
var[élB. 0.1~ | = x| = | (30)
ay ay

4 Profiled estimation applied to the melanoma data
4.1 Results for the fourth order smoothing criterion (2)
In order to make sure to get a positive smoothing parameter A, we estimate ¢ = In(2)
instead. For the melanoma data shown in Fig. 1, we estimate & = 10.1 with STD(0) =

0.81, and 3 = —0.445 with STD(,é) = 0.062. The dotted curve in Fig. 1 is the solution
of the linear differential equation (ODE) D*x = — exp(Z,B)sz when g = —0.445.
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Fig. 2 The boxplots for the estimated 8, & = log(x) and their standard deviations. The long horizontal
bars in the first two are the true values that generate the simulated data sets, and the horizontal bars in the
third and fourth graphs are the sample standard deviations for 8 and 6. Notice that the medians in the last
three boxplots are almost covered by the long horizontal bars. The cross in the third graph is the median of
the conditional standard deviation for

Figure 1 also displays the fitted curve with its pointwise 95% confidence interval. We
can see the ODE solution is very close to the fitted curve, which indicates that this
ODE describes well the dynamical behavior of melanoma incidence. This can also be
verified by the large value of the estimate A = ¢! for the smoothing parameter. The
estimated variance of the observations is 6% = 0.070.

To verify the accuracy of our estimates of parameters and their standard errors, we
generated 1000 simulated data sets by adding white noise with variance o> = 0.070
to the differential equation solution with 8 = —0.445. Figure 2 contains boxplots for
the estimated B and 6 as well as their respective standard deviations. The biases for
B’s and 6 are 1.6% and 5% of their true values, respectively. The long lower tail in the
boxplot for 6 indicates that GCV sometimes seriously underestimates the smoothing
parameters, which is a known feature of the criterion (Gu 2002). The medians of the
unconditional standard deviation estimates for ,3 and @ are almost the same as their
corresponding sample standard deviations. In comparison, the median of the condi-
tional standard deviation estimates for /§ is far below the sample standard deviation,
indicating that the precision of B will be seriously underestimated if the dependency
of § on the data is not taken into account.

Figure 3 shows that the median of the unconditionally estimated pointwise stan-
dard deviation of x(¢) from these simulated data sets is close to the sample standard
deviation. Both of these standard deviations are much larger than the median of the
conditional estimates, which seriously underestimate the variability of X (¢) by ignoring
the data dependency of B and 6.

4.2 Profiled estimation for the semi-parametric model (6)

All of the calculations are similar as for the fourth order smoothing criterion (2), except
that the coefficient vector ¢ minimizing the criterion (6) is
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Fig. 3 The solid line is the median of the unconditionally estimated standard deviation of x (z) from these
1000 simulated data sets. The dashed lines are the the 2.5%, 97.5% quantiles of the estimates. The solid
line marked with circles is the sample standard deviation of x(¢), and the solid line marked with crosses is
the median of the conditional standard deviation estimates for x (¢)

&P, 1) =[®'®+R*(y, )] ' &y — Ma), (31)

where R*(y, 1) = & [ Lo@(t)L2¢(t)'dt, @ = (g, «1)’, and M is the n x 2 design
matrix with the ith row to be (1, ).

From the real data shown in Fig. 4, we obtain the statistical inferences of the param-
eters in the semi-parametric model (6), which are shown in Table 1. The estimated data
variance is 0.067, which is calculated by 6> = SSE/(dfe — 2). Here the degrees of
freedom is set of dfe — 2, since we have two linear coefficients «g and «. Figure 4
displays the predicted curve

() =ag + art + & x (1) 32)

along with its estimated 95% confidence interval.

To verify our estimates, we generate 1000 simulated data sets by adding white noise
with variance o2 = 0.067 to the predicted curve (32). Figure 5 illustrates the boxplots
for the estimates of «g, a1, y and 6 = log(A). The estimates of «g, o are almost
unbiased, and the biases for the estimates of y and 6 are only 0.5% and 2% of their
true values.

Figure 6 shows the boxplots for the standard deviation estimates of these four
parameters, the median of which are close to their sample standard deviations. As
we would expect, the median of the conditional standard deviation estimates for
is far lower than the sample variance, which means the standard deviation for 8 is
underestimated by the conditional estimates.

Figure 7 displays the 2.5%, 50%, 97.5% quantiles of the estimated standard devi-
ation for x(¢). The median of the estimated standard deviation for x () is close to the
sample standard deviation, but the median of the conditional estimate is far lower than
both of them.
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5

Melanoma cases per 10

1940 1950 1960 1970
Year
Fig. 4 The circles are the number of Age-adjusted incidences of melanoma per 10° from 1936 to 1972.

The solid curve is the predicted curve $(¢) = &g +a& ¢+ €(y) @ (¢), with the 95% confidence interval given
as dashed lines

Table 1 The statistical

inferences of the parameters in Parameters Estimates STD's

the semi-parametric model (6) 0.92 38 x 10-2
o 0.11 4.0 x 1073
B —0.43 3.1 x 1072
0 7.5 0.56

5 Discussion and conclusions

The two models for Melanoma data involve two differential equations with analytical
solutions, so it is certainly possible to work on their solutions (5) straightaway. But
usually the forms of differential equations are much simpler than their analytical solu-
tions. Moreover, a large number of models in engineering, ecology and many other
areas are given directly in the form of differential equations, and most of them don’t
have analytical solutions. In fact, estimating differential equations is a crucial problem,
which is also called inverse problem in engineering.

Wherever parameters are tied to local characteristics of the data, and consequently
are large in number relative to other parameters requiring estimation, it is natural to
consider some sort of regularization of their estimates. This leads in turn to an inner and
an outer optimization, where in the inner loop conditional regularized local parameter
estimates are computed, and in the outer loop the global parameters are estimated. That
is, the nuisance parameters are effectively functions of the global parameters, whether
implicitly or explicitly. The coefficients of basis function expansions of functional
parameters are natural candidates for this treatment.

The regularization process can itself depend on unknown parameters, as we illus-
trated with the melanoma data. In fact, regularization is often defined within a Bayesian
framework, where the roughness penalty is the log of a prior density. In this case, the
prior density is often a function of one or more parameters, such as prior variances and
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Fig. 5 The boxplots for the estimated o, o1, y and & = log(i) from these 1000 simulated data sets.
The horizontal bars are the true values of parameters that generate the simulated data sets. Notice that the
median in the first boxplot is covered by the horizontal bars
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Fig. 6 The boxplots for the unconditionally estimated STD(«q), STD(c¢1), STD(y) and STD(0) from 1000
simulated data sets. The long horizontal bars are their sample standard deviations, and the cross in the first
three graphs is the median of conditional standard deviation estimates. Notice that the median in the third
boxplot is covered by the long horizontal bars

covariances, and it is such parameters that we refer to here as complexity parameters.
These can be fixed, as they often are, or they can be estimated from the data. In either
case, we view the use of such informative regularizers as a powerful extension of the
model building process. We have illustrated in our analysis of the melanoma data that
the multi-criterion optimization process implied by a parameter cascade can lead to
accurate estimates of both the parameters and of the precision of their estimates.

In recent years, statisticians have favored a Bayesian approach using Markov Chain
Monte Carlo to remove local parameters by integrating over their values with respect
to some prior measure. This idea is closely related to what we propose here, with the
primary difference being that we use an optimizing estimate, which might be called
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Fig. 7 The solid line is the median of the unconditionally estimated standard deviation of x (¢) from 1000
simulated data sets. The dashed lines are the the 2.5%, 97.5% quantiles of the estimates. The solid line
marked with circles is the sample standard deviation of x(¢), and the solid line marked with crosses is the
median of the conditional standard deviation estimates for x (¢)

from a Bayesian perspective a modal estimate, rather than integration over potential
values of nuisance parameters. However, this difference between the two approaches is
less important than it may appear, since the mean value theorem states than an integral
over ¢ is equal to the range of integration times the integrand evaluated at some point
¢, and consequently this point may be thought of as implicitly defining a function of
global parameter estimates derived from marginal likelihoods or posterior densities.

Although we do not want to diminish the importance and appeal of Bayesian meth-
ods in any way, nevertheless, the marginalization approach to nuisance parameters
does have a number of serious drawbacks, and particularly with respect to deploying
the technology to applied settings. The computer code required for MCMC meth-
ods must often be written in low level languages to achieve the required efficiency,
and therefore represents a major programming investment for both the computational
code and the user interface that envelopes it. Users are confronted with issues of the
appropriate number of “burn-in” cycles, choices of jump distributions and other tuning
considerations which they may be poorly equipped to understand, and that may be
specific to the data being analyzed. The heavy computational burden of MCMC can
also work against use in applications. Finally, marginalization as a concept is itself
sometimes difficult to communicate to statistically naive users.

On the other hand, the extended profiling process works naturally with regulari-
zation approaches to control complexity, and casts the computational problem in a
structural parameter space of often greatly reduced dimensionality. We have found
the approach to be especially useful in the context of estimating differential equa-
tion models in Ramsay et al. (2007) where each output variable requires its own high
dimensional basis expansion, but where the differential equation itself is defined by
an often small number of structural parameters. We have found that estimates of these
parameters and of their precisions can be obtained in a very small fraction of the
computation time required by an MCMC-based algorithm used within a Bayesian
framework.
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The convenience of the multi-criterion optimization and parameter cascade con-
cepts and the good statistical properties of parameter estimates obtained in this way
suggest that this approach deserves consideration along with marginalization and other
methods for dealing with local or nuisance parameters.

Appendix

The global parameter B and the complexity parameter 6 in our model are estimated
by the Newton—Raphson algorithm in the middle and outer optimization level, with
the gradients and Hessian matrices given analytically. As a result, the computation is
extremely fast, usually no more than 1s. In the appendix, we supply the main mathe-
matical formulas required in the outer optimization level. More mathematical details
can be obtained by contacting the authors.

e The first derivative of GCV(A(¢)) with respect to 6 is

AGCY (. JSSE dar
eV _ lase _25sE292C |gre? (33)
96 96 26

where

safe( _ (@)
a0 “\ae
9SSEG)  , ((dA L dA

e The second derivative of GCV(A(#)) with respect to 6 is
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e The second derivative of GCV(A(?)) with respect to 6 and y; is

92ecv(n) ddfe ISSE L ar 92SSE
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909y dy; 00 900y
ISSE ddfe d’dfe 3
— — 288 dfe
dy; 00 300y
JSSE 9af daf
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dy; dy
92dfe(n) d*A
— = —Tr
900y dody;
dSSE(L) dAY’ dA
—— =2[A-A)d - Ayl — y’[(—) I-A)+dA-A{—) |y
dyi dy; dy;
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00y _2[((E) I-A+a=4 (%))yl
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Here, the notation []; means the i —th entry in the vector inside [].
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