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Abstract

Differential Equations are used in modeling diverse behaviors in a wide variety of sciences.
Traditionally methods for estimating the Differential Equation parameters θ depend on aug-
menting the parameter space to include initial system states x0 and numerically solving the
equations. This paper presents Smooth Functional Tempering a new population MCMC ap-
proach for posterior estimation of parameters. The proposed method borrows insights from
parallel tempering and model based smoothing to define a sequence of approximations to the
posterior with increased basins of attraction for the mode. The tempered approximations
depend on relaxations of the solution to the differential equation model reducing or removing
the need for x0 and a numerical differential equation solution. Rather than tempering via
approximations to the posterior that are more heavily rooted in the prior, this new method
tempers towards to data features, providing faster convergence, robustness to values used
to initialize the algorithm and robustness of the algorithm to prior distributions that do
not reflect the features of the data. Two variations of the method are proposed and their
performance is examined through simulation studies and a real application to the chemical
reaction dynamics of producing nylon. Matlab files are available online.

Keywords: Dynamic Systems, Parallel Tempering, Model Based Smoothing, Functional Data Anal-
ysis, Population MCMC, Multi-Grid MCMC

1 Introduction

Differential Equations (DEs) are used to model complex phenomena in pharmacokinetics, neuro-

physiology, chemical engineering, systems biology, climate models and other sciences. They are
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typically built from well understood scientific principles such as conservation of mass, energy and

momentum, while providing an easily interpretable parameter vector θ that is often unavailable

with other classes of models. DEs describe the rate of change of a vector of functional system

states x(t) with respect to an argument, such as time t ∈ [0, T ] through a functional regression

model;

dx(t)/dt− f(x(t),θ, t) = 0, (1)

where in the presence of measurement noise one observes

y(t) = x(t) + ε(t), ε(t) ∼ N(0, σ2), (2)

where only a subset of states may be observed. When there is no analytic solution for x(t), as

often arises when f(·) is a nonlinear function, the initial system states x0 = x(0) are required to

produce the numerical solution to the DE, x(t) = S(θ,x0, t) using, for example, a Runge-Kutta

solver. Consequently, current Bayesian parameter estimation methods Gelman et al. (1996) and

Huang and Wu (2006) use a model of the form:

P (y(t) | θ,x0, σ
2) ∼ N (S(θ,x0, t), σ

2) ,

θ,x0, σ
2 ∼ P (θ,x0, σ

2).
(3)

Through changes in x0, θ and manipulated system inputs, a DE model can describe a wide variety

of complex behaviors including oscillations, steady states, exponential growth and decay with a

small number of parameters. However, the flexibility of a DE to succinctly model these behaviors

comes at a heavy price. When centered on S(θ,x0, t), the likelihood in (2) may be rife with

undesirable topography such as local maxima, ridges, ripples and/or large flat segments Esposito

and Floudas (2000). Gradient based methods like non-linear least squares (NLS)Bates and Watts

(1988) do not typically perform well and practitioners are warned to expect an method based error

level of the order of 25% Marlin (2000). Sampling based methods like Metropolis Hastings (MH)

where the DE is numerically solved at each proposed parameter value may also have difficulty

exploring the posterior surface under these topological difficulties. Examples of these problems

are shown in section 4.2.

A recent frequentist approach to parameter estimation based on generalized profiling (GP)

aims to improve the posterior topology by using a data smooth x̂(t) ≈ S(θ,x0, t) from a basis

expansion. Estimates of θ are determined by the profile likelihood marginalizing over the nuisance
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parameters used to construct x̂(t) Ramsay et al. (2007) . The data smoothing in GP is performed

accounting for both the dynamics in (1) and the data features, providing an increased basin of

attraction for the mode of θ. Smoothing, removes the dependence on the nuisance parameters x0

and improves stability of the estimate of θ. However it has been shown that sometimes the profile

likelihood performs poorly for eliminating nuisance parameters Walley and Moral (1999). This

paper describes a Bayesian version of this method that improves upon the frequentist counter-

part by eliminating the need to depend on profiling, permitting inference about x0 and enabling

inference in the presence of multi-modality.

We present a new Bayesian sampling method for posterior estimation of θ and optionally

x0 from DE models. The proposed smooth functional tempering (SFT) is a population MCMC

method that borrows insights from parallel tempering (PT) and GP by using a model based data

smooth to define a sequence of approximations to the posterior with increased basins of attraction

for the modes. SFT does not require a-priori knowledge of the posterior topology, sequential

MCMC or a bounded posterior space. Furthermore unlike PT, SFT is robust to situations where

prior information is inconsistent with the data. Since SFT is a population MCMC method using

model based smoothing, Section 2 reviews background methods and leads up to the description

of two variants of SFT in Section 3. A simulation study is given in Section 4 followed by a real

data case study in Section 5.

2 Background

The lack of an analytical form for S(θ,x0, t) implies that there is no closed form for the likelihood.

Furthermore, the challenging posterior topologies associated with DE models prevents a gradient

based approach and parameter estimation therefore requires simulation-based methods such as

MCMC (Gelman et al. 1996 and Huang et al. 2006) or simulated annealing Gonzales et al. (2007)

with a numerical solution to the DE computed at each iteration. The dependence on S(θ,x0, t)

augments the parameter space with the inclusion of x0, a set of nuisance parameters that increase

with additional experimental runs. While typically the structural parameters, θ, are of primary

interest because they define the DE dynamics, current methods treat x0,θ and σ2 in (3) equally

despite their differing influence on the data-generating process.

In the context of differential equation models, the problems with many sampling methods are
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that the topology of the posterior and location of the dominant mode are difficult to determine,

the posterior generally does not have a closed form expression and the parameter space may be

unbounded and high dimensional. Furthermore, the posterior surface may have local maxima

surrounded by deep and wide likelihood valleys making determining the global mode difficult.

Figure 1 shows an example of a multimodal posterior surface where local modes associated with

a partial fit to the data are of negligible posterior relevance.

2.1 Population MCMC

Population based simulation methods are designed to improve mobility of the parameters using

information from parallel MCMC chains based on a sequence of approximations to the posterior

density (see Jasra, Stephens and Holmes 2007 for a recent overview.) Parallel tempering (PT),

for example, approximates the posterior of ψ = [θ,x0] through a sequence of m = 1, . . . ,M

approximations; Pm(ψ | y) ≈ P (ψ | y) defined by a temperature gradient 0 ≤ λ1 < . . . < λM =

1Geyer (1991). The mth such approximation is

Pm(ψ | y) ∝
(
P (y | ψ)

)λm

P (ψ). (4)

At λ1 = 0, P1(ψ | y) = P (ψ) and at λM = 1, PM(ψ | y) = P (ψ | y) the posterior of interest.

The M posterior approximations are the target densities of parallel Metropolis Hastings (MH)

MCMC chains. The posterior approximations from smaller λm are based more heavily on the

prior affording ψm greater mobility around the posterior parameter space compared to larger m

chains. Consequently, the smaller m chains explore a wider parameter surface while the larger

m chains remain trapped in the basin of attraction of a local posterior mode. Figure 2 shows

the impact of changes in λ on the posterior surface of γ in the FitzHugh-Nagumo model to be

discussed in Section 4.

At the ith iteration, each chain independently performs a MH step to update ψ(i). The M

chains are not generated entirely independently. With some probability, two chains k and ` are

randomly selected and their parameters ψ
(i)
k and ψ

(i)
` are proposed to exchange between the chains

rather than mutate independently. The exchange is accepted with probability

rswap = min

(
1,
Pk(ψ

(i)
` | y)P`(ψ

(i)
k | y)

Pk(ψ
(i)
k | y)P`(ψ

(i)
` | y)

)
.
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Figure 1: A cross section of the FitzHugh-Nagumo likelihood for γ (bottom) and the fits to the

data for V (grey) and R (black) corresponding to the likelihood modes using the true parameter

values (top middle), a small value (top left) and a large value (top right)

In the long run the proposed exchanges between neighboring chains should be accepted approx-

imately 50% of the time to ensure reasonably smooth sequence of distributions Liu (2001). The

exchange step enables multiple modes to be sampled and improves mixing.

PT and variants (such as Marinari and Parisi1992 or Neal 1996 for example or more specific

to dynamic systems; Calderhead, Girolami and Lawrence 2009) have been shown to work well

for sampling from multi-modal densities. Despite being less likely to get stuck in a local mode,

the posterior flattening strategies that improve the mobility of some parameters may over-flatten

parameter dimensions with less complex posterior topologies leading to slower mixing and burn-in

in the target distribution Geyer and Thompson (1995). Additionally since tempering is towards

the prior, PT will fail when prior information does not agree with the features of the observed

data (see section 4.2).

2.2 Model Based Smoothing

Model based smoothing is a generalization of smoothing splines or penalized smoothing Eilers and

Marx (1996). Using the vector of basis functions φ(t) and coefficients c, the smooth x(t) = c′φ(t)
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is the location parameter in the likelihood, for example:

y(t) | x(t), σ2 ∼ N(x(t), σ2). (5)

The prior on the shape of the smooth depends on the hyper-parameter γ and

P (x(t) | θ, γ) ∝ exp(−γ
2
PEN)

where PEN =

∫
t

[
dx(s)

ds
− f(x(s),θ, s)

]2

ds

and θ, γ, σ2 ∼ P (θ)P (γ)P (σ2).

(6)

Often in smoothing literature PEN =
∫
t
(d2x(s)/ds2 − 0)

2
ds which defines a model where prior

information anticipates a linear model, whereas in (6), the penalty is more generally based on the

integrated square of the residual of (1). The prior on x(t) increases in density as x(t) approaches the

shape defined by the DE model through PEN. Model parameters θ from (1) are hyper-parameters

to the prior on x(t).

The smoothing parameter λ = γσ2 defines the posterior balance between measurement error

σ2 and deviation from the model. As γ → 0, the posterior mode of x(t) | y,θ, σ2, γ is the

function space spanned by the basis that interpolates the data. As γ →∞, the posterior mode of

x(t) | y,θ, σ2, λ occurs on the function space spanned by the DE solution.

Model based smoothing was not designed for optimal estimation of θ when the parametric

structure of (1) is assumed. To highlight this, note that γ controls the flow of information between

y and θ since θ | y,x(t), γ, σ2 = θ | x(t), γ, σ2. Consequently, using model based smoothing, the

impact of changes in θ on x(t) is reduced and the posterior variance for θ is inflated compared to

estimating θ via (3) without the hierarchical layer of the data smooth.

In some cases x0 may be known to high precision, but remaining trajectory x(t,x0) must be

estimated. In general these initial value problems could be computed using constrained optimiza-

tion, however the computation is simplified using a B-spline basis since there is only one basis

function taking a non-zero value at each of the time interval boundaries. In terms of parameter

estimation, if x0 is known, this additional information can improve reliability in the estimation of

θ, especially when the model is sensitive to initial conditions Wu et al. (2008).
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3 Smooth Functional Tempering (SFT)

SFT, similar to PT, is a population based algorithm using parallel MCMC chains defined by a

sequence of M distributions approximating the posterior of the measurement error model in (3).

However, SFT is a collocation tempering method. That is, it depends on a basis expansion for

the approximation x(t) = c′φ(t) ≈ S(θ,x0, t), where the tempering is defined by the smoothing

parameter. When using a B-spline basis, as the smoothing parameter increases and the model

is more rigorously enforced, x(t) → S(θ,x0, t), where S(θ,x0, t) is computed using an implicit

Runge-Kutta method with stepping points at the knot locations and x0 = c′φ(t = 0) Deuflhard

and Bornemann (2000). Consequently basing the tempering process on a collocation method is

equivalent to basing the tempered chains on a relaxation to the DE solution.

In this section we outline two variations of this process, the first (SFT1) uses a smooth approx-

imation to the initial value problem using a fixed point in the data smoothing step in conjunction

with a numerical DE solution. The second (SFT2) uses smooth approximations and does not

depend on numerical DE solutions or x0.

3.1 SFT1: Parameter Estimation with a Smooth and a Numerical DE

Solution

In some cases we are interested in x0 and/or the function space spanned by the possible DE

solutions is of inferential interest such that we would like to use model (3). SFT1 defines a tem-

pering strategy towards model (3) based on the increasing sequence of fixed smoothing parameters

0 < λ1 ≤ . . . ≤ λM =∞:

Pm(y | xm(t,x0), σ
2) ∼ N (xm(t,x0), σ

2)

Pm(θ,x0, σ
2) ∝ exp

(
−λm

∫
t

[
d
dt

xm

(
s,x0

)
− f(xm

(
s,x0

)
,θ, s)

]2
ds

)
P (θ)P (x0)P (σ2)

(7)

The innovation in this model compared to model based smoothing with a fixed initial value

in section 2.2 is that SFT1 removes one layer of the hierarchical model by implicitly defining a

distribution on the smooth and using fixed values of λm. As with model based smoothing, in

SFT1 as λm → 0, the posterior mean for y tends towards a data interpolant because the induced

prior for x(t) is uniform over the function space spanned by the basis. In addition when λm = 0,
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Figure 2: The effect of changing λ on the -log(-log(non-normalized posterior)) for parameter γ in

the FitzHugh-Nagumo model using the model in PT, SFT1 and SFT2 in the left, middle and right

columns respectively. Models are compared using uniform, χ2 and Gaussian based priors in the

top, middle and bottom rows. Increasing values of λ give lines generally appearing lower down

within each plot.

Pm(θ | y) = P (θ) since θ is not used to define the shape of x(t,x0). Ensuring λM = ∞ means

that

exp

(
−λm

∫
t

[
d

dt
xm

(
s,x0

)
− f(xm

(
s,x0

)
,θ, s)

]2

ds

)
=

 1 if x(t,x0) = S(θ,x0, t)

0 otherwise
.

Consequently, the M th chain is the DE measurement error model in (3) but the M−1 chains having

λm < ∞, use a relaxation of the DE solution enabling x(t,x0) to deviate from the dynamics in

(1) to better match the features of the data. While PT tempers towards the prior, SFT1 tempers

towards the data features. Additionally, in SFT1, the impact of changes in θ and x0 on x(x0, t)

are reduced with decreasing λm.
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3.2 SFT2: Parameter Estimation Without a Numerical DE Solution

In many situations, x0 is not directly of interest but is required to numerically produce S(θ,x0, t).

Furthermore the numerical solution may be difficult to produce or may be subject to propagating

numerical errors. SFT2 avoids the potential liability of numerically solving the DE and eliminates

the reliance on x0 by tempering via the sequence of distributions for 0 < λ1 ≤ . . . ≤ λM ≤ ∞;

Pm(y | θ, σ2) = N
(
xm(t), σ2

)
Pm(θ, σ2 | y) ∝ exp

(
−λm

∫
t

[
d
dt

xm(s)− f
(
xm(s),θ, s

)]2
ds

)
P (θ)P (σ2).

(8)

As with SFT1, SFT2 uses fixed values of λm and induces a distribution on x(t). However

SFT2 no longer requires S(θ,x0, t) because xM(t) can be made arbitrarily close to the S(θ,x0, t)

as determined by the value of λM . In practice λM < ∞ for computational reasons and because

large values of λM ensure that the induced posterior on xM(t) decays rapidly towards zero as

xM(t) deviates from the function space of the DE solution. However, even at λM =∞ model (8)

is not equivalent to (3), because SFT2 effectively profiles over x0.

3.3 Impact of λ and Choosing Values

Figure 2 shows the impact of changes in λ on a cross section of the posterior surface of the γ

parameter in the FitzHugh-Nagumo model (discussed in section 4) based on SFT1, SFT2 and PT

using 3 different priors. The effectiveness of the tempering in PT changes drastically with the

prior. Using the uniform distribution or χ2
2 based priors, the minor mode at γ = 13 eventually

disappears with any tempering. However the minor mode becomes relatively more important in

PT using the N(14, 2) prior as λm decreases. Instead of tempering P (γ | y) towards the prior,

SFT methods temper the posterior function space of x(t) towards the data. Consequently the

effectiveness of tempering is not as adversely impacted by changes in the prior.

Since SFT2 does not use a fixed value of x0, it has flexibility to induce additional smoothness

into the topology of the tempered posterior. Consequently, the posterior modes for large λ values

around γ = 13 in the PT and SFT1 posterior plots are avoided when using SFT2.

If λm is small then the mth posterior approximation will have a larger posterior variance

for ψ due to its reduced impact on xm(t) or x(t,x0). This provides considerable robustness to

parameter values used to initialize the algorithm and produces a wide basin of attraction for the
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target posterior modes. To exploit this benefit, we propose the rule of thumb that the smallest

value of λ should be able to approximate the data dynamics, or if in doubt, it should nearly

interpolate the data despite the values used to initialize the algorithm. The other values of λ can

be determined by increasing λ on the log scale until the discrepancy between neighboring chains

permits an adequate exchange acceptance rate.

When using SFT2 the value of PEN should be examined to ensure that it is sufficiently small

compared to the sum of squared residuals to enforce adequate fidelity to the model at λM . If

λM is further increased the computation time will increase with negligible improvement in the

approximation x(t) ≈ S(θ,x0, t)

3.4 Choice of Basis and Computation of Smoothing Criteria

In general B-splines permit considerable flexibility in shape allowing high order smooth or dis-

continuous derivatives where needed making them a convenient choice for SFT. However, other

bases such as Fourier, wavelet or (truncated) polynomial bases are also used for smoothing and

producing solutions to DEs and may provide additional advantages in some problems. The type

and number of basis functions used must permit x(t) to accommodate the DE model dynamics

and deviations thereof for a wide range of values of θ, so there may be a need for far more basis

functions than observations, especially if the dynamics are complex. Neither SFT1 nor SFT2 ex-

plicitly sample c so having a large number of basis functions does not complicate the convergence

or tuning of the chains.

The integral terms in (7) and (8) can be computed through numerical quadrature. When using

a B-spline basis having quadrature points at the unique knot locations produces a computationally

fast result. Some relevant discussion about quadrature and PEN in model based smoothing can be

found in the discussion of Ramsay et al. 2007.

3.5 Prior Specification on θ

As an additional practical note, we emphasize here that care must be taken in producing a prior

on θ in DE systems. A prior should be placed on the shape of S(θ,x0, t) and transformed to the

parameter space [θ,x0]. Placing a proper prior on [θ,x0] directly may lead to improper posterior

distributions and increase the topological difficulties Bates and Watts (1988). In practice, a prior
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on the function space is often easier to deal with than transforming distributions on function

spaces into priors on θ.

4 Simulated examples from the FitzHugh-Nagumo model

The FitzHugh-Nagumo differential equations (FitzHugh 1961 and Nagumo, Arimoto and Yoshizawa

1962) are a simple model for the voltage potential across the cell membrane of the axon of giant

squid neurons. These equations are used in neuro-physiology as an approximation of the observed

spike potential. The voltage V moving across the cell membrane depends on the recovery variable

R through the relationship:

dV
dt

= γ
(
V − V 3

3
+R

)
, dR

dt
= − 1

γ
(V − α + βR) . (9)

An example of a simulated data set and the true underlying process based on γ = 3 appears

in figure 1 along with a cross section of the log likelihood. Figure 1 also includes additional DE

solutions using parameter values corresponding to minor modes of the cross section. The mode

corresponding to values of γ ≈ .5 produces a DE solution with the correct period but the shape

is too sinusoidal to represent the dynamics of V . The mode corresponding to values of γ ≈ 9

produces approximately the correct shape but does not match the period. To move from the

local modes, γ causes a deterioration in the data fit before it can be improved, thereby producing

wide regions of prohibitively deep posterior topology of approximately exp(4000) units deep on

the log scale. We consider a bimodal version of this model to highlight the ability to accurately

estimate the posterior in section 4.1. We compare Bayesian and frequentist methods using a one

dimensional version of this model in the presence of prior information that is inconsistent with

the data features in section 4.2. The full FitzHugh-Nagumo model is explored in section 4.3.

4.1 One Dimensional Bimodal Example

In this section we alter (9) to produce a symmetric, bimodal posterior for γ;

dV
dt

=| γ |
(
V − V 3

3
+R

)
, dR

dt
= − 1

|γ| (V − α + βR) . (10)

Due to the computationally intensity of working with differential equations, ten simulated data

sets were obtained from the numerical solution to (10) using the parameter γ = 3 at the 201 evenly
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spaced time points t = 0, 0.1, 0.2, . . . , 20 with added Gaussian white noise. Focusing attention on γ,

all other parameters are held fixed at their true values [α, β, σ2
V , σ

2
R, V0, R0] = [.2, .2, .25, .16,−1, 1]

so that the posterior density can be evaluated numerically and compared with results from SFT1,

SFT2 and PT under two prior distributions: P (γ) = 1
2
χ2

2, γ > 0

P (−γ) = 1
2
χ2

2, γ < 0
(11)

and

P (γ) = Uniform(−15, 15) (12)

Priors had little influence on the posterior, which could be reasonably approximated by 2

identical Gaussians whose means are separated by 312 standard deviations. SFT1 and SFT2 were

set up with 101 evenly spaced knots from a 5th order B-spline basis with one quadrature point at

the unique knot locations. From the largest λM for each method, parallel chains were added by

tuning the next value of λm to approach the swap acceptance rate of 50%.

Using both of the prior distributions for γ, the numerically evaluated posterior (Pnum) was

compared with the results of the sampling based methods through

D(P̂sampled) =

∫ [
Pnum(γ | y)− P̂sampled(γ | y)

]2
dγ. (13)

These values are shown in figure 3 for the M th chains using the last 40,000 posterior draws after

discarding burn-in.

The M th chains of SFT1 and PT use the same target distribution but PT performed somewhat

better than SFT1 with a uniform prior on γ but somewhat worse with a χ2 based prior. SFT1 and

PT assume that x0 were known exactly but SFT2 estimates γ without this additional knowledge.

Consequently, SFT2 uses less information which translates into a posterior variance around the

modes of γ = ±3 which approximately 7 times wider than that using SFT1 or PT. Consequently,

D(P̂SFT2) was computed comparing the sampled density with the numerical estimate of it’s smooth

based density from the M th chain.

Figure 4 shows the autocorrelation functions (ACFs) and their point-wise mean ACFs for

the posterior samples of the λM chains. The main factor dominating the ACF is the exchange

between the modes at ±3. In general, the ACFs for SFT2 perform the best in part due to the

lack of dependence on the initial conditions. SFT1 generally ranks second of these methods likely
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Figure 3: Discrepancy between sampled and numerical posterior estimates using different prior

distributions and sampling methods. Boxplots show D(P̂ ) using the uniform prior (left) and the

χ2 based prior (right).

due to the reduced impact of initial conditions in the finite λm parallel chains. The ACFs for PT

are generally slowest to decay. The ordering of the ACFs are not impacted by the choice of prior

distribution in this example.

4.2 Inconsistent Prior Information

In this section we focus on the one dimensional problem of estimating only P (γ | y) using the

FitzHugh-Nagumo model (9) with a prior that is inconsistent with the observed data: γ ∼

N(18, 22). The bottom row of figure 2 shows that the global mode of the target posterior at

γ = 3 remains virtually unchanged by this change in prior. Parameter estimation was attempted

using SFT1, SFT2, PT, single chain Metropolis Hastings (MH), NLS and GP on 10 data sets from

the measurement error model from section 4. SFT1 and SFT2 were performed with 4 parallel

chains each and PT was equipped with 10. All chains in all methods were initialized at γ = 10.

The number of burn-in iterations determined by Raftery-Lewis Raftery and Lewis (1992) and was

less than 125 in all cases from this starting point. After discarding 1,000 iterations, Raftery-Lewis

and Geweke Geweke (1989) confirm convergence from all of the independent chains from all the

sampling methods.

Figure 5 also shows a boxplot of the final parameter estimates. MH and NLS are not able to
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Figure 4: The autocorrelation functions for the SFT1 (solid line), SFT2 (dotted line) and PT

(dashed line) for the bimodal problem of section 4.1, with the uniform prior (left) and the χ2

based prior (right). The heavy lines are the point-wise mean autocorrelation functions for each

model.

escape the strong gradient towards the local mode at γ = 12. The strategy of tempering towards

the prior hindered any of the PT chains from finding the global mode because the smaller λ chains

enforce behavior inconsistent with the data features and emphasize the local mode at γ = 12

within the alloted 100,000 iterations.

Both SFT1 and SFT2 used the increased basin of attraction of their smaller λ parallel chains

and tempering towards data features to avoid the impact of the inconsistent prior information. GP

also smoothes the likelihood towards the data features and the point estimate converged quickly

close to the true value. Since x0 is assumed known, SFT1 uses this additional information to

perform better than SFT2 and GP.

4.3 FitzHugh-Nagumo, full model

While the previous simulations showed the ability of the methods to produce reasonable results

in a single dimension, the performance of SFT2 was limited because it used less information than

methods relying on the ODE solution. In this section we use model (9) with simulated data from

the more realistic scenario where all of the parameters must be estimated. Prior distributions for

θ were determined by numerically solving the DE over a coarse grid of values of θ and placing
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Figure 5: Boxplots of the estimates of γ in section 4.2, the dashed line is where the methods where

initialized, the true parameter value is 3. Top: Estimates for all 6 methods, bottom, rescaled to

show detail.
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Figure 6: Bias in point estimates for the FitzHugh-Nagumo parameters α (left), β (middle) and

γ (right) of section 4.3.

approximately 95% of the prior mass over the values that produce oscillatory dynamics giving:

γ ∼ χ2
2, P (α) = P (β) = N(0, .42). (14)

Priors on V0 and R0 were empirically chosen Gaussian densities centered on the initial observa-

tions with variance equal to the observed data variance about its mean. Priors on σ2 were assumed

near zero but long tailed: P (σ2
V,R) ∝ 1/σ2

V,R. In this simulation study we used 30 different data

sets, each with 401 evenly spaced observations for each of V and R. This large amount of data

ensured that the likelihood was well approximated by multivariate Normal distributions, making

the delta method interval estimates of Ramsay et al. 2007 good approximations.

For these simulations we focus on SFT1, SFT2 and GP because other competing methods were

already shown to be inadequate in section 4.2. Parameters were initialized with draws from the

prior. All parallel chains (across all methods) were initialized with the same values. SFT1 and

SFT2 used 4 parallel chains and GP was performed using an increasing sequence of λ values as

suggested in Ramsay et al. 2007 such that SFT2 and GP have the same value of λM=10,000. The

point estimates are shown in figure 6 based on 30,000 posterior draws after burn-in. Bias is small,

approximately centered on zero and there is no significant differences between the performance of

the methods in this example.
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5 Nylon example

This section models the production of nylon in a heated reactor where it’s constituents, amine

(A) and carboxyl (C) combine producing the polymer nylon (L) and water (W) which escapes as

steam. At the same time, before leaving as steam, W in the molten nylon mixture, decomposes

L into A and C giving the symbolic competing reactions A + C ⇀↽ L + W . In the experiment of

Zheng, McAuley, Marchildon and Zhen 2005 steam is bubbled through molten nylon to maintain

an approximately constant concentration of W in the system causing A, C and L to move towards

equilibrium concentrations with W. Within each of the i = 1, . . . , 6 experimental runs, the pressure

of input steam was held at a high level until time τi1 then reduced until time τi2 when it returned

to its original level for the remainder of the experiment. Each experiment was performed at a

constant temperature Ti which, along with the input water pressure, determines the equilibrium

concentration of water in the molten nylon mixture, Weq. Using reaction rates kp and Ka, the

dynamics are described with differential equations:

−dL
dt

=
dA

dt
=
dC

dt
= −kp(CA− LW/Ka)10−3 and (15)

dW

dt
= kp10−3(CA− LW/Ka)− 24.3(W −Weq). (16)

The reaction rates are allowed to change with Ti and Weq through relationships depending on

the reference temperature T0 = 549.15 giving four DE parameters: θ = [kp, γ,Ka0,∆H];

Ka =
{

1 +Weqγ10−3
}
KT [Ka0]`

(
∆H

8.314

)
(17)

`(m) = exp

(
−m103

{
1

Ti
− 1

T0

})
(18)

KT = 20.97 exp

(
−9.624 +

3613

Ti

)
. (19)

Figure 7 shows the data for each of the 6 experimental runs. The plot shows the observed

components A and C as well as input Weq. Due to the mass balance of this system, given any

three components the fourth can be computed. Since only A and C are observed, we must estimate

the unobserved W (t) for each experimental run. Furthermore since the components are chemical

reactions they are constrained to take on non-negative values. In the nylon system x0 increases

the dimension of the parameter space from 6 parameters in [θ, σ2], to 24 parameters; [θ,x0, σ
2].
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Figure 7: The nylon observations along with the fit to the data. Temperatures of the experimental

runs are given above component A in degrees Kelvin. Vertical axes are in concentration units and

horizontal axes are in hours.

Priors were indirectly set by placing a uniform distribution on the set of functions taking

values between 0 and 250, where 250 was selected because it its about 10% larger than the largest

observation and the interval is wider than expected to be necessary. Values of the unobserved

W are expected to remain close to the values of Weq which are all less than 100 but the more

conservative value of 250 was used consistently for the states A, C and W . Additionally, the prior

distributions on 1/σ2
A and 1/σ2

C were independent Gamma densities with mean 9 and variance

27, chosen to more pessimistic than the measurement error variance estimates from additional

experiments by Zheng et al. 2005.

SFT1 and SFT2 used evenly spaced knots at a rate of 3 per hour of experimental duration.

In anticipation of sharp dynamics after the step change in input Weq, an additional 9 knots were

evenly spaced at times τ+[0.1, 0.2, ..., 0.9] after the input change. The discontinuous first derivative

induced by the step input change was accommodated by the addition of knots at the time of the

step change. SFT2 used λ1 = 100, and λ2 = 10, 000. SFT1 had four times the parameters of

the SFT2 model and consequently M = 3 chains were used, with values λ1 = 200, λ2 = 500 and

λ3 =∞.
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Figure 8: A comparison of the posterior density estimates for the nylon parameters using SFT1

(black line) and SFT2 (grey line)

5.1 Results

The small values of λ1 in both methods produced considerable robustness with respect to values

used to initialize the Markov Chains. The kernel density estimate of 40,000 posterior draws from

the M th chain of SFT1 and SFT2 for θ, σ2
A and σ2

C (after discarding burn-in) are shown in figure 8.

Estimates for the marginal posterior densities of θ are close between the methods, and the values

for D(PSFT1(θ |,y, σ2), PSFT2(θ | y, σ2)) are .057, .016, .018 and .0073 for kp0, γ,Ka0 and ∆H

respectively. The squared discrepancy between the marginal posterior density estimates deviates

slightly more for σ2
A and σ2

C giving values of D(PSFT1(σ
2 |,y,θ), PSFT2(σ

2 |,y,θ)) equal to .11

and .15 respectively. The reason for this discrepancy may lie in the marginal posterior density

estimates of x0, estimated by SFT1 and shown in figure 9. The dynamics of the system are fast

such that the impact for some of the experimental runs on moving W0 from near 0 to near 250

only affects the fit to the first few data points leading to some flat posteriors. SFT1 explores the

distribution of X0 and in the process finds more values that allow a better fit to A in exchange

for a decrease in fit to C giving the shifted densities for σ2
C and σ2

A shown in figure 8.

The advantages of SFT2 are the reduced dimension of the problem along with, in this case,

a five fold computational time reduction. However SFT1 produces new insights into the vast

uncertainty in W0.
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Figure 9: Histograms of posterior draws x0 in the nylon system using SFT1. Rows are for the

different experimental runs, while columns are (left to right) A0, C0 and W0.

6 Discussion

Parameter estimation for nonlinear differential equations is challenging for standard methods like

nonlinear least squares and basic metropolis hastings, where, despite the resemblance of con-

vergence, the likelihood topology may not permit convergence towards the global optima. The

proposed SFT combines PT and model based smoothing to improve the topological burden by

matching the features of the data with the dynamics of the model. This variation of tempering

smooths out the posterior enabling faster convergence towards the dominant mode, and as such,

represents an important new tool for population-based MCMC simulation. While the simula-

tions and application presented feature nonlinear differential equation models, the methods are

applicable to nonlinear regression in general, especially when the response surface is prohibitive.

SFT1 and SFT2 temper towards the data features to improve posterior mobility, whereas PT

was shown to fail when tempering towards a prior that is inconsistent with the data in section

4.2. Using SFT, priors can therefore be used to describe knowledge about the system without

needing to also account for it’s utility in providing an adequate tempering strategy. Furthremore,

SFT was able to traverse the difficult topology of section 4.2 using 4 parallel chains where PT was
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unable to do so while using 10 chains.

In the presence of prior information consistent with the data features, SFT1, SFT2 and PT

perform similarly at estimation as was measured by integrated squared error discrepancy between

simulated and numerical posterior estimates. However SFT has the advantage of reduced depen-

dence on initial conditions which in turn reduced the autocorrelation by improving the mixing.

When the likelihood and posterior were unimodal, SFT1, SFT2 and GP produced results that

were consistent with each other. Given additional information in the form of x0, SFT1 was able

to out-perform both of these methods, even with a prior that was inconsistent with the data. In

the case of multi-modality, GP requires additional information to find additional modes, whereas

SFT methods were shown to be successful in the FitzHugh-Nagumo bimodal example of section

4.1, where the target posterior is like a mixture of 2 identical Gaussians separated by 312 standard

deviations.

Computationally, producing a numerical solution to the DE model can be slow Huang et al.

(2006), Li et al. (2006) and producing a data smooth is not necessarily a computational improve-

ment, but use of parallel processing reduces the total computational time of using a population

MCMC method and ensures minimal additional computational time from adding more paral-

lel chains. To further reduce the computational load in SFT, one could omit computing x(t) or

x(t,x0) at each proposed value and instead update it’s estimate only occasionally during mutation

steps but constantly during the proposed exchange moves. However the success of this variation

depends strongly on the quality of the smooth approximation to the DE model and the sensitivity

of the dynamics to the parameters. This short cut will surely alter the posterior and the role of

the shortcut on convergence is not clear making guidelines for when it might be useful, the subject

of further investigation.

There may be some interest in a mixed dimension approach that uses SFT2 along with an

additional parallel chain using the model (3), where for some ` < M , an exchange move proposes to

swap (x(t = 0))` with (x0)M . However, the dimension jumping between chains with and without

x0 is not guaranteed to produce the desired target distribution for (3). In the nylon example,

the induced density PSFT2(x(t = 0) | y, λM) does not have the same distribution for W0 as

PSFT1(x0 | y, λM) because the former is essentially a profile posterior mode, whereas the latter is

intended to explore the distribution of X0.
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The variability in x0 and θ translates into variability within the function space spanned by

S(θ,x0, t) when working with the ODE solution, whereas in finite λ SFT, the smooth permits

deviation from S(θ,x0, t). For example, in figure 1 the data exhibit rapid changes in the trajectory

of component V near times 5.5, 10, 15 and 18. By permitting small deviations from the DE model

leading up to these times of rapid change the smoothing based methods have the advantage of

allowing some flexibility in the timing of these steep changes in trajectory. SFT has the additional

advantage that it’s parallel chains can be used to provide qualitative diagnostics. The evolution of

the induced posteriors of x1(t), . . . ,xM(t) will show deviations from the model dynamics towards

data. Large deviations between the data features and the model features provides a qualitative

goodness of fit diagnostic.

SUPPLEMENTAL MATERIALS

Matlab code requires the functional data analysis package (fdaM) from http:\\functionaldata.

org , the GP software from http:\\www.bscb.cornell.edu\~hooker\profile_webpages\

profiling.html and the statistics and optimization toolboxes from Matlab.

SFT.zip: Matlab code and data for simulations and analysis of the nylon application. (GNU

zipped tar file)

File Info.rtf This file is contained within the zip file. It describes the included Matlab scripts

for SFT nylon analysis and for all methods applied to the simulation of section 4.2.
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